Skip to main content

Topology, geometry, and physical properties of porous rocks

  • Conference paper
  • First Online:
Macroscopic Properties of Disordered Media

Part of the book series: Lecture Notes in Physics ((LNP,volume 154))

Abstract

By use of the concepts of skeletization and deformation retract, we characterize the geometry and topology of a porous sedimentary rock in particularly simple ways. We briefly introduce the underlying topological concepts and present a skeletization procedure which leads to clear definitions of such concepts as grain, contact, pore chamber, channel, and throat. We apply this procedure in developing novel formulations of the problems of nuclear magnetic relaxation within the pore space; of steady flow through the pore space, and of the frame moduli. We show how the ambiguity between pore chambers and channels can be exploited for the NMR and flow problems. In particular, we find that a flow problem can be reduced to a resistance network problem, but the network is not a deformation retract of the pore space. The frame moduli problem can be mapped into the long wavelength the limit of a random “lattice” - vibration problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. H. Cohen and K. Mendelson, submitted to J. Appl. Phys.

    Google Scholar 

  2. P. N. Sen, C. Scala, and M.H. Cohen, Geophysics 46, 781 (1981).

    Google Scholar 

  3. K. Mendelson and M. H. Cohen, Geophysics (in press).

    Google Scholar 

  4. P. N. Sen, this volume.

    Google Scholar 

  5. cf. D. Johnson or J. Berryman, this volume.

    Google Scholar 

  6. W. F. Brace, J. Geophys. Res. 82, 3343 (1977).

    Google Scholar 

  7. C. Lin and M. H. Cohen, submitted to J. Appl. Phys.

    Google Scholar 

  8. L. K. Barrett and C. S. Yust, Metallography 3, 1 (1970).

    Google Scholar 

  9. F. N. Rhines, Stereology, Springer-Verlag, New York (1967).

    Google Scholar 

  10. G. Matheron, Elements pour une theorie des Milieux Poreux, Masson, Paris (1967).

    Google Scholar 

  11. E. R. Davis and A.P.N. Plummer, BPRA Conference on Pattern Recognition, Oxford (1980).

    Google Scholar 

  12. J. Freer, J. Mol. Biol. 82, 279 (1974).

    Google Scholar 

  13. W. K. Pratt, Digital Image Processing, Wiley, New York (1978).

    Google Scholar 

  14. A. Rosenfeld, J. ACM 17, 146 (1970).

    Google Scholar 

  15. A. C. Shaw, J. ACM 17, 453 (1970).

    Google Scholar 

  16. J. Serra, Leitz Sci. Tech. Inform. Supplement l, 4, p. 125, Wetzler, Apr. (1974). 17. M.: Rink and J. R. Schopper, Pageoph 114 (1976).

    Google Scholar 

  17. J. Koplick, Creeping Flow in Two-Dimensional Networks, preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. Burridge S. Childress G. Papanicolaou

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag

About this paper

Cite this paper

Cohen, M.H., Lin, C. (1982). Topology, geometry, and physical properties of porous rocks. In: Burridge, R., Childress, S., Papanicolaou, G. (eds) Macroscopic Properties of Disordered Media. Lecture Notes in Physics, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-11202-2_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-11202-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11202-0

  • Online ISBN: 978-3-540-39031-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics