Topology, geometry, and physical properties of porous rocks

  • Morrel H. Cohen
  • Charlotte Lin
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 154)


By use of the concepts of skeletization and deformation retract, we characterize the geometry and topology of a porous sedimentary rock in particularly simple ways. We briefly introduce the underlying topological concepts and present a skeletization procedure which leads to clear definitions of such concepts as grain, contact, pore chamber, channel, and throat. We apply this procedure in developing novel formulations of the problems of nuclear magnetic relaxation within the pore space; of steady flow through the pore space, and of the frame moduli. We show how the ambiguity between pore chambers and channels can be exploited for the NMR and flow problems. In particular, we find that a flow problem can be reduced to a resistance network problem, but the network is not a deformation retract of the pore space. The frame moduli problem can be mapped into the long wavelength the limit of a random “lattice” - vibration problem.


Pore Space Betti Number Porous Rock Critical Surface Deformation Retract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. H. Cohen and K. Mendelson, submitted to J. Appl. Phys.Google Scholar
  2. 2.
    P. N. Sen, C. Scala, and M.H. Cohen, Geophysics 46, 781 (1981).Google Scholar
  3. 3.
    K. Mendelson and M. H. Cohen, Geophysics (in press).Google Scholar
  4. 4.
    P. N. Sen, this volume.Google Scholar
  5. 5.
    cf. D. Johnson or J. Berryman, this volume.Google Scholar
  6. 6.
    W. F. Brace, J. Geophys. Res. 82, 3343 (1977).Google Scholar
  7. 7.
    C. Lin and M. H. Cohen, submitted to J. Appl. Phys.Google Scholar
  8. 8.
    L. K. Barrett and C. S. Yust, Metallography 3, 1 (1970).Google Scholar
  9. 9.
    F. N. Rhines, Stereology, Springer-Verlag, New York (1967).Google Scholar
  10. 10.
    G. Matheron, Elements pour une theorie des Milieux Poreux, Masson, Paris (1967).Google Scholar
  11. 11.
    E. R. Davis and A.P.N. Plummer, BPRA Conference on Pattern Recognition, Oxford (1980).Google Scholar
  12. 12.
    J. Freer, J. Mol. Biol. 82, 279 (1974).Google Scholar
  13. 13.
    W. K. Pratt, Digital Image Processing, Wiley, New York (1978).Google Scholar
  14. 14.
    A. Rosenfeld, J. ACM 17, 146 (1970).Google Scholar
  15. 15.
    A. C. Shaw, J. ACM 17, 453 (1970).Google Scholar
  16. 16.
    J. Serra, Leitz Sci. Tech. Inform. Supplement l, 4, p. 125, Wetzler, Apr. (1974). 17. M.: Rink and J. R. Schopper, Pageoph 114 (1976).Google Scholar
  17. 18.
    J. Koplick, Creeping Flow in Two-Dimensional Networks, preprint.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Morrel H. Cohen
    • 1
  • Charlotte Lin
    • 2
  1. 1.James Franck Institute and Dept. of PhysicsThe University of ChicagoChicago
  2. 2.Schlumberger-Doll Research CenterRidgefield

Personalised recommendations