Advertisement

Elastic waves in fluid-saturated porous media

  • James G. Berryman
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 154)

Keywords

Slow Wave Amplitude Ratio Fast Wave Elastic Wave Propagation Porous Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range, J. Acoust. Soc. Am. 28, 168–178 (1956).Google Scholar
  2. [2]
    M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. IT. Higher frequency range, J. Acoust. Soc. Am. 28, 179–191 (1956).Google Scholar
  3. [3]
    M. A. Biot, Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys. 33, 1482–1498 (1962).Google Scholar
  4. [4]
    T. J. Plona, Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies, Appl. Phys. Lett. 36, 259–261 (1980).Google Scholar
  5. [5]
    J. G. Berry-man, Confirmation of Biot's theory, Appl. Phys. Lett. 37, 382–384 (1980).Google Scholar
  6. [6]
    N. C. Dutta, Theoretical analysis of observed second bulk compressional wave in a fluid-saturated porous solid at ultrasonic frequencies, Appl. Phys. Lett. 37, 898–900 (1980).Google Scholar
  7. [7]
    J. Korringa, R. J. S. Brown, D. D. Thompson, and R. J. Runge, Self-consistent imbedding and the ellipsoidal model for porous rocks, J. Geophys. Res. 84, 5591–5598 (1979).Google Scholar
  8. [8]
    J. G. Berryman, Theory of elastic properties of composite materials, Appl. Phys. Lett. 35, 856–858 (1979).Google Scholar
  9. [9]
    J. G. Berryman, Long-wavelength propagation in composite elastic media I. Spherical inclusions, J. Acoust. Soc. Am. 68, 1809–1819 (1980).Google Scholar
  10. [10]
    J. G. Berryman, Long-wavelength propagation in composite elastic media II. Ellipsoidal inclusions, J. Acoust. Soc. Am. 68, 1820–1831 (1980).Google Scholar
  11. [11]
    R. J. S. Brown, Connection between formation factor for electrical resistivity and fluid-solid coupling factor in Biot's equations for acoustic waves in fluid-filled porous media, Geophysics 45, 1269–1275 (1980).Google Scholar
  12. [12]
    D. L. Johnson, Equivalence between fourth sound in liquid He II at low temperatures and the Biot slow wave in consolidated porous media, Appl. Phys. Lett. 37, 1065–1067 (1980).Google Scholar
  13. [13]
    P. N. Sen, C. Scala, and M. H. Cohen, A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads, Geophysics 46, 781–795 (1981).Google Scholar
  14. [14]
    R. D. Stoll and G. M. Bryan, Wave attenuation in saturated sediments, J. Acoust. Soc. Am. 47, 1440–1447 (1970).Google Scholar
  15. [15]
    R. D. Stoll, Acoustic waves in saturated sediments, in Physics of Sound in Marine Sediments, edited by L. Hampton (Plenum, New York, 1974), pp. 19–39Google Scholar
  16. [16]
    J. Korringa, On the Biot-Gassmann equations, to appear.Google Scholar
  17. [17]
    A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity (Dover, New York, 1944), pp. 43, 62, 102.Google Scholar
  18. [18]
    M. A. Biot and D. G. Willis, The elastic coefficients of the theory of consolidation, J. Appl. Mech. 24, 594–601 (1957).Google Scholar
  19. [19]
    J. Geertsma, The effect of fluid pressure decline on volumetric changes of porous rocks, Trans. AIMS 210, 331–340 (1957).Google Scholar
  20. [20]
    F. Gassmann, Über die elastizität poröser medien, Veirteljahrsschrift der Naturforschenden Gesellschaft in Zürich 96, 1–23 (1951).Google Scholar
  21. [21]
    R. J. S. Brown and J. Korringa, On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid, Geophysics 40, 608–616 (1975).Google Scholar
  22. [22]
    T. T. Wu, The effect of inclusion shape on the elastic moduli of a two-phase material, Int. J. Solids Structurers 2, 1–8 (1966).Google Scholar
  23. [23]
    D. M. Chase, Wave propagation in liquid-saturated open-cell foam, J. Acoust. Soc. Am. 65, 1–8 (1979).Google Scholar
  24. [24]
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, London, 1959), p. 96.Google Scholar
  25. [25]
    T. S. Lundgren, Slow flow through stationary random beds and suspensious of spheres, J. Fluid Mech. 51, 273–299 (1972).Google Scholar
  26. [26]
    J. M. Hovem, Viscous attenuation of sound in suspensions and high-porosity marine sediments, J. Acoust. Soc. Am. 67, 1559–1563 (1980).Google Scholar
  27. [27]
    R. Burridge and J. B. Keller, Poroelasticity equations derived from microstructure, to appear.Google Scholar
  28. [28]
    J. M. Hovem and G. D. Ingram, Viscous attenuation of sound in saturated sand, J. Acoust. Soc. Am. 66, 1807–1812 (1979).Google Scholar
  29. [29]
    J. Geertsma and D. C. Smit, Some aspects of elastic wave propagation in fluid-saturated porous solids, Geophysics 26, 169–181 (1961).Google Scholar
  30. [30]
    T. J. Plona and D. L. Johnson, Experimental study of the two bulk compressional modes in water-saturated porous structures, in Proceedings of the November, 1980, IEEE Ultrasonics Symposium., to appear.Google Scholar
  31. [31]
    H. Deresiewicz and R. Skalak, On uniqueness in dynamic poroelasticity, Bull. Seismol. Soc. Am. 53, 783–788 (1963).Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • James G. Berryman
    • 1
  1. 1.Bell LaboratoriesWhippanyUSA

Personalised recommendations