Nonlinear evolution equations with rapidly oscillating initial data

  • D. McLaughlin
  • G. Papanicolaou
  • O. Pironneau
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 154)


We give a brief description of how one can analyze the behavior of solutions of nonlinear equations when the initial data oscillate very rapidly.


Energy Transfer Effective Stress Euler Equation Reynolds Stress Nonlinear Evolution Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.M. Burgers, The Nonlinear Diffusion Equation, D. Reidel Publishing Co., 1974.Google Scholar
  2. [2]
    S. Kida, Asymptotic properties of Burgers turbulence, J. Fluid Mech. (1979) 93, 2, pp. 337–377.Google Scholar
  3. [3]
    J.-D. Fournier, Ouelque methodes systematiques d'approximation en turbulence homogene, These, Universite de Nice, 1977.Google Scholar
  4. [4]
    D. McLaughlin, G. Papanicolaou and O. Pironneau, Selfconsistent advection of microstructure in viscous fluids. (To appear.)Google Scholar
  5. [5]
    D. McLaughlin, G. Papanicolaou and L. Tartar, Weak limits of conservation laws with oscillating data, SIAM J. Appl. Math. (To appear.)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • D. McLaughlin
    • 1
  • G. Papanicolaou
    • 1
  • O. Pironneau
    • 2
  1. 1.Courant Institute of Mathematical SciencesParis
  2. 2.University of Paris XIParis

Personalised recommendations