Coherent medium approach to hopping conduction

  • M. Lax
  • T. Odagaki
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 154)


We have presented the coherent medium approach to hopping conduction problems where the motion of carriers obey the usual random walk equation and discussed the existence of the coherent medium which is defined through an average of the random walk propagator. We have introduced the coherent medium approximation (CMA) to obtain an approximate but easily tractable coherent medium. The CMA is a generalized use of the coherent potential approximation (CPA) in the master equation. The CPA is one of the most fruitful methods in treating random systems and is widely used in electron 19 and phonon problems. 18 We have applied the CMA to various cases of hopping conduction in one- and three-dimensions and compared the results with experiment. A simple comparison of the CMA with other methods has also been given.

We have derived the CMA condition Eq. (5.11) from the multiple scattering formalism due to Lax.12,13 An alternative derivation of Eq. (5.11) was given by Odagaki and Lax,l10 where a traditional idea of the effective medium approximation was used.36 Namely, a random unit is subjected to an as yet unknown effective medium and the effective medium is determined to be such that the resulting extra perturbation is required to vanish on the average over all possibilities of the random unit. A similar condition to Eq. (5.11) has also been used in the problem of random resistor networks.37

We hope that further improvements of the coherent medium approximation will be developed including traps, asymmetric jump rates, cluster effects and a similar method will be applied to other problems, for example, optical properties and magnetic properties of random systems.


Random Walk Percolation Threshold Random System Bethe Lattice Jump Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Pollak and T. H. Geballe, Phys. Rev. 122, 1742 (1961).Google Scholar
  2. 2.
    J. M. Reyes, M. Sayer, A. Mansingh and R. Chen, Can. J. Phys. 54, 413 (1976).Google Scholar
  3. 3.
    A. S. Barker Jr., J. A. Ditzenberger and J. P. Remeika, Phys. Rev. B14, 4254 (1976).Google Scholar
  4. 4.
    M. Sayer, A. Mansingh, J. B. Webb and J. Noad, J. Phys. C: Solid State Phys. 11, 315 (1978).Google Scholar
  5. 5.
    R. M. Mehra, P. C. Mathur, A. K. Kathuria and R. Shyam, Phys. Rev. B18, 5620 (1978).Google Scholar
  6. 6.
    M. Suzuki, J. Phys. Chem. Solids 41, 1253 (1980).Google Scholar
  7. 7.
    S. R. Elliott, Phil. Mag. 36, 1291 (1977).Google Scholar
  8. 8.
    Actually, P(s,t I s0,0) can be written as an absolute square of a matrix element of e−iHt−h, where H is the total Hamiltonian of the underlying problem. See refs. 9 and 10.Google Scholar
  9. 9.
    H. Scher and M. Lax,(a) Phys. Rev. B7, 4491 (1973);(b) ibid, 4502 (1973).Google Scholar
  10. 10.
    T. Odagaki and M. Lax, Phys. Rev. B to be published.Google Scholar
  11. 11.
    For example, T. Holstein, S. K. Lyo and R. Orbach, Phys. Rev. B15, 4693 (1977).Google Scholar
  12. 12.
    M. Lax, Rev. Mod. Phys. 23, 287 (1951); Phys. Rev. 85, 621 (1952).Google Scholar
  13. 13.
    M. Lax, “Wave Propagation and Conductivity in Random Media,” in Stochastic Differential Equations SIAMAMS (Soc. for Industrial and Applied Math.-American Mathematical Soc.) Proc. vol. 6, 35–95 Amer. Math. Soc. Providence, R.I. (1973).Google Scholar
  14. 14.
    J. Klafter and R. Silbey, Phys. Rev. Letts. 44, 55 (1980).Google Scholar
  15. 15.
    R. Zwanzig, J. Chem. Phys. 33, 1338 (1960); See also Lectures in Theoretical Physics Vol. III, 106 (edited by W. E. Brittin), Interscience, New York (1961); and Phys. Rev. 124, 983 (1961).Google Scholar
  16. 16.
    See, for example, F. Yonezawa and K. Morigaki, Prog. Theor. Phys. Suppl. 53, 1 (1973); R. J. Elliott, J. A. Krumhansl and P. L. Leath, Rev. Mod. Phys. 46, 465 (1974).Google Scholar
  17. 17.
    M. Lax, Phys. Rev. 79, 200 (1950).Google Scholar
  18. 18.
    D. W. Taylor, Phys. Rev. 156, 1017 (1967).Google Scholar
  19. 19.
    P. Soven, Phys. Rev. 156, 809 (1967).Google Scholar
  20. 20.
    J. Bernasconi, W. R. Schneider and W. Wyss, Z. Physik B 37, 175 (1980).Google Scholar
  21. 21.
    M. Lax and H. Scher, Phys. Rev. Letts. 39, 781 (1977).Google Scholar
  22. 22.
    E. Feenberg, Phys Rev. 74, 206 (1948); E.. N. Economou, “Green's Functions in Quantum Physics,” (Springer-Verlag, Berlin, Heidelberg 1979).Google Scholar
  23. 23.
    R. Abou-Chacra, P. W. Anderson, and D. J. Thouless, J. Phys. C: Solid State Phys. 6, 1734 (1973).Google Scholar
  24. 24.
    J. Bernasconi, S. Alexander and R. Orbach, Phys. Rev. Letts. 41, 185 (1978).Google Scholar
  25. 25.
    B. Movaghar, J. Phys. C: Solid State Phys. 13, 4915 (1980).Google Scholar
  26. 26.
    T. Odagaki and M. Lax, Phys. Rev. B to be published.Google Scholar
  27. 27.
    T. Odagaki and M. Lax, Phys. Rev. Letts, 45, 847 (1980).Google Scholar
  28. 28.
    T. Odagaki and M. Lax, in preparation.Google Scholar
  29. 29.
    J. Bernasconi, H. U. Beyeler, S. Strässler and S. Alexander, Phys. Rev. Letts. 42, 819 (1979).Google Scholar
  30. 30.
    S. Alexander, J. Bernasconi; W. R. Schneiderand R. Orbach, Rev. Mod. Phys. 53, 175 (1981).Google Scholar
  31. 31.
    T. Odagaki and M. Lax, in preparation.Google Scholar
  32. 32.
    P. M. Richards and R. L. Renken, Phys. Rev. B21, 3740 (1980).Google Scholar
  33. 33.
    A. Miller and E. Abrahams, Phys. Rev. 120, 745 (1960).Google Scholar
  34. 34.
    S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).Google Scholar
  35. 35.
    J. A. McInnes, P. N. Butcher and J. D. Clark, Phil. Mag. B41, 1 (1980).Google Scholar
  36. 36.
    R. Landauer, “Electrical Conductivity in Inhomogeneous Media,” in Proceedings of the First Conlerence on the Electrical Transport and Optical Properties of Inhomogeneous Media, edited by J. C. Garland and D. B. Tanner, (A.I.P. New York, 1978), p 2.Google Scholar
  37. 37.
    S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • M. Lax
    • 1
    • 2
  • T. Odagaki
    • 3
  1. 1.Department of PhysicsThe City College of the City University of New YorkNew York
  2. 2.Bell LaboratoriesMurray Hill
  3. 3.Department of PhysicsThe City College of the City University of New YorkNew York

Personalised recommendations