Skip to main content

The pathology of marginal renal function

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 91

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 91))

  • 50 Accesses

Abstract

The residual nephrons respond to the progressive nephron loss by an organized functional adaptation which permits them to maintain homeostasis. They do this by magnifying their response to the information provided by the control systems for the major key solutes (i.e., sodium, phosphorus, and possibly potassium), by increasing secondary to hyperplasia the number of specific cells (i.e., ammonium), or by unknown mechanisms (i.e., bicarbonate). As discussed, all the physiologic mechanisms of intrarenal transports apply to the residual nephrons which behave like normal nephrons facing an overload of solute and water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison ME, Wilson CB, Gottschalk CW (1974) Pathophysiology of experimental glomerulonephritis in rats. J Clin Invest 53:1402–1423

    PubMed  Google Scholar 

  • Allison MEM, Wilson CB, Gottschalk CW (1975) Hyperoncotic albumin infusion in experimental glomerulonephritis in rats: A micropuncture study. Yale J Biol 48:277–292

    PubMed  Google Scholar 

  • Arnaud CD (1973) Hyperparathyroidism and renal failure. Kidney Int 4:89–95

    PubMed  Google Scholar 

  • Arnaud CD, Goldsmith RS, Bordier JP, Sizemore GW (1974) Influence of immunoheterogeneity of circulating parathyroid hormone on results of radioimmunoassays of serum in man. Am J Med 56:785–793

    Article  PubMed  Google Scholar 

  • Arruda JA, Carrasquillo T, Cerbria A, Rademacher DR, Kurzmann NA (1976) Bicarbonate reabsorption in chronic renal failure. Kidney Int 9:481–488

    PubMed  Google Scholar 

  • Bahlmann J, McDonald SJ, Dunningham JG, de Wardener HE (1967) The effect on urinary sodium excretion of altering the packed cell volume with albumin solutions without changing the blood volume in the dog. Clin Sci 32:395–402

    PubMed  Google Scholar 

  • Bank N, Aynedjian HS (1966) Individual nephron function in experimental bilateral pyelonephritis. I. Glomerular filtration rate and proximal tubular sodium, potassium, and water reabsorption. J Lab Clin Med 68:713–727

    PubMed  Google Scholar 

  • Bank N, Aynedjian HS (1973) A micropuncture study of potassium excretion by the remnant kidney. J Clin Invest 52:1480–1490

    PubMed  Google Scholar 

  • Bank N, Su WS, Aynedjian HS (1978) A micropuncture study phosphate transport in rats with chronic renal failure and secondary hyperparathyroidism. J Clin Invest 61:884–894

    PubMed  Google Scholar 

  • Basti CP, Hayslett JP, Binder HJ (1975) Augmented colonic potassium secretion in renal insufficiency. Clin Res 23:245A

    Google Scholar 

  • Beck LH, Senesky D, Goldberg M (1973) Sodium-independent active potassium reabsorption in proximal tubule of the dog. J Clin Invest 52:2641–2645

    PubMed  Google Scholar 

  • Begin R, Epstein M, Sackner MA, Levinson R, Dougherty R, Duncan D (1976) Effects of water immersion to the neck on pulmonary circulation and tissue volume in man. J Appl Physiol 40:293–299

    PubMed  Google Scholar 

  • Benyajati S, Goldstein L (1978) Relation of ammonia excretion adaptation to glutaminase activity in acidotic subtotalnephrectomized rats. Kidney Int 14:50–57

    PubMed  Google Scholar 

  • Berl T, Katz FH, Henrich WL, de Torrente A, Schreier RW (1978) Role of aldosterone in the control of sodium excretion in patients with advanced chronic renal failure. Kidney Int 14:228–235

    PubMed  Google Scholar 

  • Berliner RW, Kennedy TJJ (1948) Renal tubular secretion of potassium in the normal dog. Proc Soc Exp Biol Med 67:542–545

    Google Scholar 

  • Berlyne GM (1971) Exchangeable potassium and renal potassium handling in advanced chronic renal failure. Nephron 8:264–269

    PubMed  Google Scholar 

  • Bonjour JP, Preston C, Fleisch H (1977) Effect of 1,25 Dihydroxyvitamin D3 on the renal handling of Pi in thyroparathyroidectomized rats. J Clin Invest 60:1419–1428

    PubMed  Google Scholar 

  • Bourgoignie JJ, Klahr S, Bricker NS (1971) Inhibition of transepithelial sodium transport in the frog skin by a low molecular weight fraction of uremic serum. J Clin Invest 50:303–311

    PubMed  Google Scholar 

  • Bourgoignie JJ, Hwang KH, Espinel C, Klahr S, Bricker NS (1972) A natriuretic factor in the serum of patients with chronic uremia. J Clin Invest 51:1514–1527

    PubMed  Google Scholar 

  • Bourgoignie JJ, Hwang KH, Ipakchi E, Bricker NS (1974) The presence of a natriuretic factor in urine of patients with chronic uremia. The absence of the factor in nephrotic uremic patients. J Clin Invest 53:1559–1567

    PubMed  Google Scholar 

  • Bourgoignie JJ, Kaplan M, Eun Ch, Favre H, Hwang KH, Blumenfeld O, Bricker NS (1975) On the characterization of natriuretic factor. Clin Res 23:429A

    Google Scholar 

  • Bricker NS (1967) The control of sodium excretion with normal and reduced nephron population: the preeminence of third factor. Am J Med 43:313–321

    Article  PubMed  Google Scholar 

  • Bricker NS (1969) On the meaning of the intact nephron hypothesis. Am J Med 46:1–11

    Article  PubMed  Google Scholar 

  • Bricker NS (1978) Extracellular fluid volume regulation: on the evidence for a biologic control system. In: Epstein M (ed) The kidney in liver disease. Elsevier, New York

    Google Scholar 

  • Bricker NS, Dewey RR, Lubowitz H, Stokes JN, Krikensgaard T (1959) Observations on the concentrating and diluting mechanisms of the diseased kidney. J Clin Invest 38:516–523

    PubMed  Google Scholar 

  • Bricker NS, Kime SW Jr, Morrin PAF (1960a) The functional integrity of the pyelonephritic kidney. In: Quinn EL, Kass EH (eds) Biology of pyelonephritis. Little Brown and Co., Boston

    Google Scholar 

  • Bricker NS, Morrin PAF, Kime SW Jr (1960b) The pathologic physiology of chronic Bright's disease: an exposition of the “intact nephron hypothesis”. Am J Med 28:77–98

    Article  PubMed  Google Scholar 

  • Bricker NS, Orlowski T, Kime SW Jr, Morrin PAF (1960c) Observations on the functional homogeneity of the nephron population in the chronically diseased kidney of the dog. J Clin Invest 39:1771–1776

    Google Scholar 

  • Bricker NS, Doorhout Mees EJ, Klahr S, Orlowski ZB, Rieselbach RE, Todd LE (1964) The rate limiting and adaptative events in tubular and glomerular functions of the chronically diseased kidney. Proc II. Intern Congr of Nephrology, Prague. Excerpta Medica, Amsterdam, Internation Congress Series

    Google Scholar 

  • Bricker NS, Klahr S, Lubowitz H, Rieselbach RE (1965) Renal function in chronic renal disease. Medicine 44:263–288

    PubMed  Google Scholar 

  • Bricker NS, Slatopolsky E, Lubowitz H, Schultze R (1967) Nephron alterations in renal failure: a model for the study of the control system of sodium excretion. In: Brest AN (ed) Hahnemann Symposium. Lippincott, Philadelphia

    Google Scholar 

  • Bricker NS, Klahr S, Lubowitz H, Slatopolsky E (1971) The pathophysiology of renal insufficiency: on the functional transformations in the residual nephrons with advancing disease. Pediatr Clin N Am 18:595–611

    Google Scholar 

  • Bricker NS, Bourgoignie JJ, Weber H, Schmidt RW, Slatopolsky E (1972) On the pathogenesis of the uremic state: a new perspective. In: Hamburger J, Crosnier J, Maxwell MH (eds) Advances in nephrology, Vol 2. Year Book Medical Publishers, Chicago

    Google Scholar 

  • Bricker NS, Fine LG, Kaplan MA, Epstein M, Bourgoignie JJ, Licht A (1978) Magnification phenomenon in chronic renal disease. N Engl J Med 299:1287–1293

    PubMed  Google Scholar 

  • Brochner-Mortenson K (1938) Uric acid in blood and urine in Bright's disease. Acta Med Scand 96:438–446

    Google Scholar 

  • Brown PR, Koutsaimanis KG, de Wardener HE (1972) Effect of urinary extracts from salt-loaded man on urinary sodium excretion by the rat. Kidney Int 2:1–5

    PubMed  Google Scholar 

  • Buckalew VM (1972) Variable factors affecting ultrafiltration of a humoral sodium transport inhibitor. Nephron 9:66–76

    PubMed  Google Scholar 

  • Buckalew VM Jr, Gruber KA (1978) On the nature of plasma antinatriuretic activity. Abstract, VIIth International Congress of Nephrology, Montreal

    Google Scholar 

  • Buckalew VM Jr, Lancaster CD Jr (1971) Studies of a humoral sodium transport inhibitory activity in normal dogs and dogs with ligation of the inferior vena cava. Circ Res (Suppl II) 28–29:44–51

    Google Scholar 

  • Buckalew VM, Lancaster CD (1972) The association of a humoral sodium transport inhibitory activity with renal escape from chronic mineralocorticoid administration in the dog. Clin Sci 42:69–78

    PubMed  Google Scholar 

  • Carriere S, Wong NLM, Dirks JH (1973) Redistribution of renal blood flow in acute and chronic reduction of renal mass. Kidney Inter 3:364–371

    Google Scholar 

  • Chasis H, Smith HW (1938) The excretion of urea in normal man and subjects with glomerulonephritis. J Clin Invest 17:347–359

    Google Scholar 

  • Clarkson EM, Koutsaimanis KG, Davidman M, Du Bois M, Penn WP, de Wardener HE (1974) The effect of brain extracts on urinary sodium excretion of the rat and the intracellular sodium concentration of renal tubule fragments. Clin Sci Mol Med 47:201–213

    PubMed  Google Scholar 

  • Clarkson EM, Raw SM, de Wardener HE (1976) Two natriuretic substances in extracts of urine from normal man when salt depleted and salt-loaded. Kidney Int 10:381–394

    PubMed  Google Scholar 

  • Clarkson EM, Raw SM, de Wardener HE (1979) Further observations on a low molecular weight natriuretic substance in the urine of normal man. Kidney Int 16:710–721

    PubMed  Google Scholar 

  • Coburn JW, Popovtzer M, Massy SG, Kleeman CR (1969) The physicochemical state and renal handling of divalent ions in chronic renal failure. Arch Intern Med 124:302–311

    Article  PubMed  Google Scholar 

  • Colodro IH, Brickman AS, Coburn JW, Osborn TW, Norman AW (1978) Effect of 25 hydroxy vitamin D3 on intestinal absorption of calcium in normal man and patients with renal failure. Met 27:745–753

    Article  Google Scholar 

  • Cope CL, Person J (1963) Aldosterone secretion in severe renal failure. Clin Sci 25:331–341

    PubMed  Google Scholar 

  • Crumb CK, Martinez-Maldonado M, Eknoyan G, Suki W (1974) Effects of volume expansion, purified parathyroid extract, and calcium on renal bicarbonate absorption in the dog. J Clin Invest 54:1287–1294

    PubMed  Google Scholar 

  • Danovitch GM, Weinberg J, Berlyne GM (1972) Uric acid in advanced renal failure. Clin Sci Mol Med 43:331–341

    Google Scholar 

  • Davidman M, Alexander E, Lalone R, Levinsky N (1972) Nephron function during volume expansion in the rat. Am J Physiol 223:188–193

    PubMed  Google Scholar 

  • Deen WM, Maddox DA, Robertson CR, Brenner BM (1974) Dynamics of glomerular ultrafiltration in the rat VII response to reduced renal mass. Am J Physiol 227:556–562

    PubMed  Google Scholar 

  • Del Greco F, Simon NM, Roguska J, Walker C (1969) Hemodynamic studies in chronic uremia. Circulation 40:87–95

    PubMed  Google Scholar 

  • Dorhout Mees EJ, Machado M, Slatopolsky E, Klahr S, Bricker NS (1966) The functional adaptation of the diseased kidney. III. Ammonium excretion. J Clin Invest 45:289–296

    PubMed  Google Scholar 

  • Dunn MJ (1979) Renal prostaglandins: influences on excretion and water, the renin angiotensin system, renal blood flow and hypertension. In: Brenner EM, Stein JH (eds) Contemporary issues in nephrology, Vol IV. Hormonal function in the kidney. Churchill Livingston, London

    Google Scholar 

  • Elkington JR (1957) Hydrogen ion turnover in health and in renal disease. Ann Intern Med 57:660–672

    Google Scholar 

  • Epstein FH (1975) Critical role of the renal papilla in potassium adaptation: effect of papillectomy in the isolated perfused kidney. Clin Res 23:374A

    Google Scholar 

  • Epstein M, Duncan DC, Fishman LM (1972) Characterization of the natriuresis caused in normal man by immersion in water. Clin Sci 43:275–287

    PubMed  Google Scholar 

  • Epstein M, Pins DS, Arrington R, Denunzio AG, Engstrom R (1975) Comparison of water immersion and saline infusion as means of inducing volume expansion in man. J Appl Physiol 39:66–70

    PubMed  Google Scholar 

  • Epstein M, Bricker NS, Bourgoignie JJ (1978) Presence of natriuretic factor in urine of normal men undergoing water immersion. Kidney Int 13:152–158

    PubMed  Google Scholar 

  • Espinel CH (1975a) Influence of sodium excretion on bicarbonate reabsorption in experimental chronic uremia. J Clin Invest 56:286–291

    PubMed  Google Scholar 

  • Espinel CH (1975b) Effect of proportional reduction of sodium intake on the adaptive increase in glomerular filtration rate nephron and potassium and phosphate excretion in chronic renal failure in the rat. Clin Sci 49:193–200

    Google Scholar 

  • Favre H (1978a) An inhibitor of the sodium transport in the urine of dogs and human with normal renal function, a study of chronically expanded subjects. In: Kramer HF, Krück F (eds) Natriuretic hormone. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Favre H (1978b) Sequential measurements of natriuretic factor activities in the urine of man on high salt diet before and on 9αfludrocrotisone. Abstract, VII. International Congress of Nephrology, Montreal

    Google Scholar 

  • Favre H, Hwang KH, Schmidt RW, Bricker NS, Bourgoignie JJ (1975) An inhibitor of sodium transport in the urine of dogs with normal renal function. J Clin Invest 56:1302–1311

    PubMed  Google Scholar 

  • Favre H, Louis F, Gourjon M (1979) Role of the basal sodium intake in the rats on their response to a natriuretic factor. Pfluegers Arch 382:73–79

    Article  Google Scholar 

  • Fine LG, Bourgoignie JJ, Kuo HK, Bricker NS (1976a) On the influence of the natriuretic factor from patients with chronic uremia on the bioelectric properties and sodium transport of the isolated mammalian collecting tubule. J Clin Invest 58:590–597

    PubMed  Google Scholar 

  • Fine LG, Bourgoignie JJ, Weber H, Bricker NS (1976b) Enhanced end organ responsiveness of the uremic kidney to the natriuretic factor. Kidney Int 10:364–372

    PubMed  Google Scholar 

  • Fine LG, Yanagawa N, Schultze RG (1979) Functional profile of the isolated uremic nephron. Potassium adaptation in the rabbit cortical collecting tubue. J Clin Invest 64:1033–1043

    PubMed  Google Scholar 

  • Finkelstein FO, Hayslett JP (1974) Role of medullary structures in the functional adaptation of renal insufficiency. Kidney Int 6:419–425

    PubMed  Google Scholar 

  • Fisher K, Binder HJ, Hayslett JP (1974) Effect of chronic potassium loading on colonic function. Am Soc Nephrol 7:27 (Abstracts)

    Google Scholar 

  • Fotino S (1977) Phosphate excretion in chronic renal failure: evidence for a mechanism other than circulating parathyroid hormone. Clin Nephrol 8:499–503

    PubMed  Google Scholar 

  • Garella S, Chazan JA, Bar-Khayim Y, Cohen JJ (1972) Isolated effect of increased ECF volume on HCO3 and Cl reabsorption in the dog. Am J Physiol 222:1138–1146

    PubMed  Google Scholar 

  • Giebisch G (1971) Renal potassium excretion. In: Rouiller C, Muller AF (eds) The kidney: morphology, biochemistry and physiology, Vol 3. Academic Press, New York

    Google Scholar 

  • Gilmore JP (1968) Contribution of cardiac nerves to the control of body salt and water. Fed Proc 27:1156–1159

    PubMed  Google Scholar 

  • Godon JP (1972) Sodium and water retension in experimental glomerulonephritis. Kidney Int 2:271–278

    PubMed  Google Scholar 

  • Godon JP (1978) Renal origin of a natriuretic material: some chemical properties. In: Kramer HJ, Krück F (eds) Natriuretic hormone. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Goldman R, Bassett S (1954) Phosphorus excretion in renal failure. J Clin Invest 33:1623–1628

    PubMed  Google Scholar 

  • Gonick CH, Saldanha LF (1975) A natriuretic principle derived from kidney tissues of volume expanded rats. J Clin Invest 36:247–255

    Google Scholar 

  • Gottschalk CW (1971) Function of the chronically diseased kidney: the adaptive nephron. Circ Res 28:1–13 (Suppl II)

    PubMed  Google Scholar 

  • Gruber KA, Buckalew VM Jr (1978) Further characterization and evidence for a precursor in the formation of plasma antinatriferic factor (40371). Proc Soc Exp Biol Med 159:463–467

    PubMed  Google Scholar 

  • Harrington JT, Cohen JJ (1973) Clinical disorders of urine concentration and dilution. Arch Intern Med 131:810–825

    Article  PubMed  Google Scholar 

  • Hauley MJ, Kokko JP, Gross JB, Jacobson HR (1980) Electrophysiologic study of the cortical collecting tubule of the rabbit. Kidney Int 17:74–81

    PubMed  Google Scholar 

  • Hayslett JP, Boyd JE, Epstein FH (1969) Aldosterone production in chronic renal failure. Proc Soc Exp Biol Med 130:912–914

    PubMed  Google Scholar 

  • Herbert CS, Martinez-Maldonado M, Eknoyan G, Suki WN (1972) Relation of bicarbonate to sodium reabsorption in dog kidney. Am J Physiol 222:1014–1020

    PubMed  Google Scholar 

  • Hillgard SD, Lu E, Gonick CH (1976) Further characterization of the natriuretic factor derived from kidney tissue of volume expanded rats: effects on short circuit-current and Na-K-ATPase activity. Circ Res 38:250–256

    PubMed  Google Scholar 

  • Holliday NA, Egan TJ, Morris CR, Jarrah A, Harrah JL (1967) Pitressin-resistant hyposthenuria in advanced chronic renal disease. Am J Med 42:378–387

    Article  PubMed  Google Scholar 

  • Howards SS, Davis BB, Knox GF, Wright FS, Berliner RW (1968) Depression of fractional sodium reabsorption by the proximal tubule of the dog without sodium diuresis. J Clin Invest 47:1561–1572

    PubMed  Google Scholar 

  • Kaplan MA, Bourgoignie JJ, Rosecan J, Bricker NS (1974) The effect of the natriuretic factor from uremic urine on sodium transport, water and electrolyte content, and pyruvate oxidation by the isolated toad bladder. J Clin Invest 53:1568–1577

    PubMed  Google Scholar 

  • Kaplan MA, Canterburry JM, Gavellas G, Jaffe D, Bourgoignie JJ, Reiss E, Bricker NS (1978) Interrelation between phosphorus, calcium, parathyroid hormone and renal phosphate excretion in response to an oral phosphorus load in normal and uremic dogs. Kidney Int 14:207–214

    PubMed  Google Scholar 

  • Kaplan MA, Canterburry JM, Bourgoignie JJ, Veliz G, Gavellas G, Reiss G, Bricker NS (1979) Reversal of hyperparathyroidism in response to dietary phosphorus restriction in the uremic dog. Kidney Int 15:43–48

    PubMed  Google Scholar 

  • Kaufman JM, Siegel NJ, Hayslett JP (1975) Functional and hemodynamic adaptation to progressive renal ablation. Circ Res 36:286–293

    PubMed  Google Scholar 

  • Kaye M (1974) The effects in the rat of varying intakes of dietary calcium, phosphorus, and hydrogen ion on hyperparathyroidism due to chronic renal failure. J Clin Invest 53:256–269

    PubMed  Google Scholar 

  • Kaye Z, Mayeda S, Zipser R, Zia P, Horton R (1978) The effects of sodium on renal prostaglandins in normal man. Clin Res 26:140A

    Google Scholar 

  • Kawamura J, Mazumbar DC, Lubowitz H (1977) Glucose reabsorption in experimental glomerulonephritis. Proc Soc Exp Biol Med 156:321–325

    PubMed  Google Scholar 

  • Kleeman CR, Adams DA, Maxwell MH (1961) An evaluation of maximal water diuresis in chronic renal disease. I. Normal solute intake. J Lab Clin Med 58:169–184

    PubMed  Google Scholar 

  • Kleeman CR, Okun R, Heller RJ (1966) The renal regulation of sodium and potassium in patients with chronic renal failure (CRF) and the effect of diuretics on the excretion of these ions. Ann NY Acad Sci 139:520–539

    PubMed  Google Scholar 

  • Knox FG (1973) Role of the proximal tubule in the regulation of urinary sodium excretion. Mayo Clin Proc 48:565–573

    PubMed  Google Scholar 

  • Kopple JD, Coburn JW (1974) Evaluation of chronic uremia. Importance of serum urea nitrogen, serum creatinine and their ratio. JAMA 227:41–44

    Article  PubMed  Google Scholar 

  • Kramer HJ, Gospodinow B, Krück F (1974) Humorale Hemmung des epithelialen Natrium-Transports nach akuter Expansion des extracellulären Volumens. Weitere Untersuchungen zur Existenz eines natriuretischen Hormons. Klin Wochenschr 52:801–808

    Article  PubMed  Google Scholar 

  • Kramer HJ, Bäcker A, Krück F (1977) Antinatriferic activity in human plasma following acute and chronic salt loading. Kidney Int 12:214–222

    PubMed  Google Scholar 

  • Kurtzman NA, Pillay VKG (1973) Renal reabsorption of glucose in health and disease. Arch Intern Med 131:901–904

    Article  PubMed  Google Scholar 

  • Licht A (unpublished data)

    Google Scholar 

  • Louis F, Favre H (1980a) Basal activity of the natriuretic factor extracted from the rat kidney as a function of the diet and its role in the regulation of the acute sodium balance. Clin Sci Mol Med 58:385–391

    Google Scholar 

  • Louis F, Favre H (1980b) Natriuretic factor in rats acutely expanded by Ringer's versus albumin solution. Kidney Int 18:20–28

    PubMed  Google Scholar 

  • Lubowitz H, Purkerson ML, Bricker NS (1966) Investigation of single nephrons in the chronically diseased (pyelonephritic) kidney of the rat using micropuncture techniques. Nephron 3:73–83

    PubMed  Google Scholar 

  • Lubowitz H, Purkerson ML, Sugita M, Bricker NS (1969) GFR per nephron and per kidney in the chronically diseased (pyelonephritic) kidney of the rat. Am J Physiol 217:853–857

    PubMed  Google Scholar 

  • Lubowitz H, Purkerson ML, Rolf D, Weisser F, Bricker NS (1971) The effect of nephron loss on proximal tubular bicarbonate reabsorption in the rat. Am J Physiol 220:457–461

    PubMed  Google Scholar 

  • Lubowitz H, Mazumdar DC, Kawamura J, Crosson JT, Weisser F, Rolf D, Bricker NS (1974) Experimental glomerulonephritis in the rat: structural and functional observations. Kidney Int 5:356–364

    PubMed  Google Scholar 

  • Luetscher JA Jr, Hall AD, Kremer VL (1950) Treatment of nephrosis with concentrated human serum albumin. II. Effects on renal function of water and some electrolytes. J Clin Invest 29:896–908

    PubMed  Google Scholar 

  • MacLean AJ, Hayslett JP (1980) Adaptive change in ammonia excretion in renal insufficiency. Kidney Int 17:596–606

    Google Scholar 

  • Maddox D, Bennett C, Deen W, Glassock P, Knutson D, Brenner BM (1975) Control of proximal tubule fluid reabsorption in experimental glomerulonephritis. J Clin Invest 55:1315–1325

    PubMed  Google Scholar 

  • Martin KJ, Freitag JJ, Conrades MB, Hruska K, Klahr S, Slatopolsky E (1978) The uptake of parathyroid hormone by isolated perfused bone: possible significance of peripheral hormone metabolism. Trans Assoc Am Physicians 91:358–367

    PubMed  Google Scholar 

  • Martino JA, Earley LE (1968) Relationship between intrarenal hydrostatic pressure and hemodynamically induced changes in sodium excretion. Circ Res 23:371–386

    PubMed  Google Scholar 

  • Massry SG, Friedler RM, Coburn JW (1973) Excretion of phosphate and calcium. Arch Intern Med 131:828–859

    Article  PubMed  Google Scholar 

  • Massry SG, Tuma S, Dua A, Goldstein DA (1979) Reversal of skeletal resistance to parathyroid hormone in uremia by vitamin D metabolites. J Lab Clin Med 94:152–157

    PubMed  Google Scholar 

  • Mawer EB, Backhouse J, Hill LF, Lumb GA, Da Silva P, Taylor CM, Stanbury SW (1975) Vitamin D metabolism and parathyroid function in man. Clin Sci Mol Med 48:349–365

    PubMed  Google Scholar 

  • Mazumdar DC, Crosson JT, Lubowitz H (1975) Glomerulo-tubular relationships in glomerulonephritis. J Lab Clin Med 85:292–299

    PubMed  Google Scholar 

  • Morrin PA, Bricker NS, Kime SW, Klein C (1962a) Observation on the acidifying of the experimentally diseased kidney in the dog. J Clin Invest 41:1297–1302

    PubMed  Google Scholar 

  • Morrin PA, Gedney WB, Newmark LN, Bricker NS (1962b) Bicarbonate reabsorption in the dog with experimental renal disease. J Clin Invest 41:1303–1311

    PubMed  Google Scholar 

  • Oliver J (1939) Architecture of the kidney in chronic Bright's disease. Hoeber, New York

    Google Scholar 

  • Papanicolaou N, Safar M, Hornych A, Fontaliran F, Weiss Y, Bariety J, Milliez P (1975) The release of renal prostaglandins during saline infusion in normal and hypertensive subjects. Clin Sci Mol Med 49:459–463

    PubMed  Google Scholar 

  • Pitts RF (1974) Physiology of the kidney and body fluids. 3rd ed. Year Book Med Publ, Chicago

    Google Scholar 

  • Platt R (1950) Sodium and potassium excretion in chronic renal failure. Clin Sci 9:367–376

    Google Scholar 

  • Platt R (1952) Structural and functional adaptation in renal failure. Br Med J I:1313–1317

    Google Scholar 

  • Polak A (1971) Sodium depletion in chronic renal failure. J Royal Coll Physicians (London) 51:333–343

    Google Scholar 

  • Popovtzer MM, Robinette JB, de Luca HF, Holick MF (1974) The acute effect of 25 hydroxycholecalciferol on renal handling of phosphorus. Evidence for a parathyroid hormone-dependent mechanism. J Clin Invest 53:913–921

    PubMed  Google Scholar 

  • Puchett JB, Goldberg M (1969) The relationship between the renal handling of phosphate and bicarbonate in man. J Lab Clin Med 73:956–969

    PubMed  Google Scholar 

  • Purkenson ML, Lubowitz H, White RM, Bricker NS (1969) On the influence of extracellular fluid volume expansion on bicarbonate reabsorption in the rat. J Clin Invest 48:1754–1760

    PubMed  Google Scholar 

  • Reiss E, Bricker NS, Kime SW Jr, Morrin PA (1961) Observations on phosphate transport in experimental renal disease. J Clin Invest 40:165–176

    PubMed  Google Scholar 

  • Reiss E, Canterburry JM, Kanter A (1969) Circulating parathyroid hormone concentration in chronic renal insufficiency. Arch Intern Med 124:417–422

    Article  PubMed  Google Scholar 

  • Reiss E, Canterburry JM, Bergovitz MA, Kaplan EL (1970) The role of phosphate in the secretion of parathyroid hormone in man. J Clin Invest 49:2146–2149

    PubMed  Google Scholar 

  • Relman AS (1964) Renal acidosis and renal excretion of acid in health and disease. Adv Intern Med 12:295

    PubMed  Google Scholar 

  • Rieselbach RE, Todd L, Rosenthal M, Bricker NS (1964) The functional reabsorption of the diseased kidney. II. Maximum rate of transport of PAH and the influence of acetate. J Lab Clin Med 64:724–730

    PubMed  Google Scholar 

  • Rieselbach RE, Shankel SW, Slatopolsky E, Lubowitz H, Bricker NS (1967) Glucose titration studies in patients with chronic progressive renal disease. J Clin Invest 46:157–163

    PubMed  Google Scholar 

  • Robson AM, Srivastava PL, Bricker NS (1972) The influence of saline loading on renal glucose reabsorption in the rat. J Clin Invest 47:329–335

    Google Scholar 

  • Rocha A, Marcondes M, Malnic G (1973) Micropuncture study in rats with experimental glomerulonephritis. Kidney Int 3:14–33

    PubMed  Google Scholar 

  • Schmidt RW, Bricker NS (1973) On the interdependence of separate solute control systems in uremia. Clin Res 21:705 (Abstracts)

    Google Scholar 

  • Schmidt RW, Danovitch GM (1979) Glucose reabsorption in experimental renal insufficiency: effects of proportional reduction of sodium intake. Kidney Int 16:590–599

    PubMed  Google Scholar 

  • Schmidt RW, Bourgoignie JJ, Bricker NS (1974) On the adaptation in sodium excretion in chronic uremia: the effects of “proportional reduction” of sodium intake. J Clin Invest 53:1736–1741

    PubMed  Google Scholar 

  • Schmidt RW, Bricker NS, Gavellas G (1976) Bicarbonate reabsorption in the dog with experimental renal disease. Kidney Int 10:287–294

    PubMed  Google Scholar 

  • Schmidt U, Schmid J, Schmidt H, Dubach UC (1975) Sodium and potassium activated ATPase a possible target of aldosterone. J Clin Invest 55:655–660

    PubMed  Google Scholar 

  • Schon DA, Silva P, Hayslett JP (1974) Mechanism of potassium excretion in renal insufficiency. Am J Physiol 227:1323–1330

    PubMed  Google Scholar 

  • Schoolwerth AC, Sandler RS, Hoffman PM, Klahr S (1975) Effects of nephron reduction and dietary protein content on renal ammoniagenesis in the rat. Kidney Int 7:397–404

    PubMed  Google Scholar 

  • Schrier RW, Regal EM (1972) Influence of aldosterone on sodium, water and potassium metabolism in chronic renal disease. Kidney Int 1:156–168

    PubMed  Google Scholar 

  • Schultze RG, Berger H (1973) The influence of GFR and saline expansion on TmG of the dog kidney. Kidney Int 3:291–297

    PubMed  Google Scholar 

  • Schultze RG, Shapiro HS, Bricker NS (1969) Studies on the control of sodium excretion in experimental uremia. J Clin Invest 48:869–877

    PubMed  Google Scholar 

  • Schultze RG, Taggart DD, Shapiro H, Pennell JP, Caglar S, Bricker NS (1971) On the adaptation in potassium excretion associated with nephron reduction in the dog. J Clin Invest 50:1061–1068

    PubMed  Google Scholar 

  • Schwartz WB, Hall PW, Hays RM, Relman AS (1959) On the mechanism of acidosis in chronic renal disease. J Clin Invest 38:39–52

    PubMed  Google Scholar 

  • Sealey JE, Kirshman JD, Laragh JH (1969) Natriuretic activity in plasma and urine of salt loaded man and sheep. J Clin Invest 48:2210–2224

    PubMed  Google Scholar 

  • Shankel SW, Robson AM, Bricker NS (1967) On the mechanism of the splay in the glucose titration curve in advanced experimental renal disease in the rat. J Clin Invest 46:164–172

    PubMed  Google Scholar 

  • Shannon JA (1935) The renal excretion of creatinine in man. J Clin Invest 14:403–411

    Google Scholar 

  • Shannon JA, Smith HW (1935) The excretion of inulin, xylose and urea by normal and phlorizined man. J Clin Invest 14:393–402

    Google Scholar 

  • Sherwood LM, Mayer GP, Ramberg CF, Kronberg DS, Anerbach GD, Potts JF (1968) Regulation of parathyroid hormone secretion: Proportional control by calcium. Lack of effect of phosphate. Endocrinology 83:1043–1051

    PubMed  Google Scholar 

  • Silva P, Hayslett JP, Epstein FH (1973) The role of Na-K-activated adenosine triphosphatase in potassium adaptation. Stimulation of enzymatic activity by potassium loading. J Clin Invest 52:2665–2671

    PubMed  Google Scholar 

  • Slatopolsky E, Bricker NS (1973) The role of phosphorus restriction in the prevention of secondary hyperparathyroidism in chronic renal disease. Kidney Int 4:141–145

    PubMed  Google Scholar 

  • Slatopolsky E, Elkan IO, Weerts C, Bricker NS (1968a) Studies on the characteristics of the control system governing sodium excretion in uremic man. J Clin Invest 47:521–530

    PubMed  Google Scholar 

  • Slatopolsky E, Robson AM, Elkan I, Bricker NS (1968b) Control of phosphate excretion in uremic man. J Clin Invest 47:1865–1874

    PubMed  Google Scholar 

  • Slatopolsky E, Hoffsten P, Purkerson M, Bricker NS (1970) On the influence of extracellular fluid volume expansion and of uremia on bicarbonate reabsorption in man. J Clin Invest 49:988–993

    PubMed  Google Scholar 

  • Slatopolsky E, Caglar S, Pennell JP, Taggart DD, Canterburry JM, Reiss E, Bricker NS (1971) On the pathogenesis of hyperparathyroidism in chronic renal disease. J Clin Invest 50:492–499

    PubMed  Google Scholar 

  • Slatopolsky E, Caglar S, Gradowska L, Canterburry JM, Reiss E, Bricker NS (1972) On the prevention of secondary hyperparathyroidism in experimental chronic renal disease using “proportional reduction” of dietary phosphorus intake. Kidney Int 2:147–151

    PubMed  Google Scholar 

  • Slatopolsky E, Hruska K, Rutherford WE (1975) Current concepts of parathyroid hormone and vitamin D metabolism: perturbations in chronic renal disease. Kidney Int 7:90–96

    Google Scholar 

  • Slatopolsky E, Gry R, Adamas ND, Lewis J, Hruska K, Martin K, Klahr S, de Luca H, Lemann J (1978a) Low serum levels of 1.25 (OH)2D3 are not responsible for the development of secondary hyperparathyroidism in early renal failure. Am Soc Nephrol 11:99A (Abstracts)

    Google Scholar 

  • Slatopolsky E, Rutherford WE, Hruska K, Martin K, Klahr S (1978b) How important is phosphate in the pathogenesis of renal osteodystrophy? Arch Inter Med 138:848–852

    Google Scholar 

  • Smith HW (1951) The kidney structure and function in health and disease. Oxford Univ Press, New York

    Google Scholar 

  • Sonnenberg H (1973) Proximal and distal tubular function in salt-deprived and in salt-loaded deoxycorticosterone acetate-escaped rats. J Clin Invest 52:263–272

    PubMed  Google Scholar 

  • Steele TH, Wen SF, Evenson MA, Rieselbach RE (1968) The contribution of the chronically diseased kidney to magnesium homeostasis in man. J Lab Clin Med 71:455–463

    PubMed  Google Scholar 

  • Stein JH, Osgood RW, Boonjarern S, Cox JW, Ferris TF (1974) Segmental sodium reabsorption in rats with mild and severe volume depletion. Am J Physiol 227:351–359

    PubMed  Google Scholar 

  • Stein JH, Osgood RW, Boonjarern S, Ferris TF (1973) A comparison of the segmental analysis of sodium reabsorption during Ringer's and hyperoncotic albumin infusion in the rat. J Clin Invest 52:2313–2323

    PubMed  Google Scholar 

  • Swenson MS, Weisinger JR, Ruggeri JL, Reaven GM (1975) Evidence that parathyroid hormone is not required for phosphate homeostasis in renal failure. Metabolism 24:199–204

    Article  PubMed  Google Scholar 

  • Tannen RL, Regal EM, Dunn MJ, Schrier RW (1969) Vasopressin-resistant hyposthenuria in advanced chronic renal disease. N Engl J Med 280:1135–1141

    PubMed  Google Scholar 

  • Tobian L, O'Donnell M (1976) Renal prostaglandins in relation to sodium regulation and hypertension. Fed Proc 35:2388–2392

    PubMed  Google Scholar 

  • Wagnild JP, Gutmann FD, Rieselbach RE (1974) Functional characterization of chronic unilateral glomerulonephritis in the dog. Kidney Int 5:422–428

    PubMed  Google Scholar 

  • Weber H, Lin KY, Bricker NS (1975) Effect of sodium intake on single nephron glomerular filtration rate and sodium reabsorption in experimental uremia. Kidney Int 8:14–20

    PubMed  Google Scholar 

  • Welbourne T, Weber M, Bank N (1972) The effect of glutamine administration on urinary ammonium excretion in normal subjects and in patients with renal disease. J Clin Invest 51:1852–1880

    PubMed  Google Scholar 

  • Wesson LG (1973) Glomerulotubular balance: history of a name. Kidney Int 4:236–238

    PubMed  Google Scholar 

  • Wilkinson R, Luetcher JA, Dowdy AS, Gonzales C, Nokes GW (1972) Studies on the mechanism of sodium excretion in uremia. Clin Sci 42:711–723

    PubMed  Google Scholar 

  • Wright FS (1977) Sites and mechanisms of potassium transport along the renal tubule. Kidney Int 11:415–432

    PubMed  Google Scholar 

  • Wrong O, Davies HEF (1959) The excretion of acid in renal disease. Q J Med 28:259–313

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag

About this chapter

Cite this chapter

Favre, H., Bricker, N.S. (1981). The pathology of marginal renal function. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 91. Reviews of Physiology, Biochemistry and Pharmacology, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-10961-7_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-10961-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10961-7

  • Online ISBN: 978-3-540-38543-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics