Combinatorial problems on series-parallel graphs

  • K. Takamizawa
  • T. Nishizeki
  • N. Saito
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 108)


We show, in a unified manner, that there exist linear time algorithms for many combinatorial problems defined on the class of series-parallel graphs. These include (i) the decision problem, and (ii) the minimum edge (vertex) deletion problem both with respect to a property characterized by a finite number of forbidden graphs, and (iii) the generalized matching problem.


  1. [1]
    A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass. 1974.Google Scholar
  2. [2]
    M. Boulala and J. Uhry, Polytope des independants d'un graphe series-parallel, Discrete Math., 27, pp. 225–243 (1979).Google Scholar
  3. [3]
    G. Chartrand, D. Geller and S. Hedetniemi, Graphs with forbidden subgraphs, J. of Combinatorial Theory, 10, pp. 12–41 (1971).Google Scholar
  4. [4]
    R. J. Duffin, Topology of series parallel networks, J. Math. and Appli. 10, pp. 303–318 (1965).Google Scholar
  5. [5]
    J. Edmonds, Paths, trees, and flowers, Canad. Math. 17, pp. 449–467 (1965).Google Scholar
  6. [6]
    S. Even and O. Kariv, An O(n2.5) algorithm for maximum matching in general graphs, Proc. IEEE 16th Symp. on FOCS, pp. 100–112 (1975).Google Scholar
  7. [7]
    M. R. Garey, D. S. Johnson and L. Stockmeyer, Some simplified NP-complete graph problems, Theoretical Computer Science, 1, pp. 237–267 (1976).Google Scholar
  8. [8]
    J. E. Hopcroft and R. E. Tarjan, Dividing a graph into triconnected components, SIAM J. Comput., 2, 3, pp. 135–158 (1973).Google Scholar
  9. [9]
    F. O. Hadlock, Finding a maximum cut of a planar graph in polynomial time, SIAM J. Comput., 4, pp. 221–225 (1975).Google Scholar
  10. [10]
    F. Harary, Graph Theory, Addison-Wesley, Reading, Mass. 1969.Google Scholar
  11. [11]
    S. T. Hedetniemi, Hereditary properties of graphs, J. Combinatorial Theory (B), 14, pp. 94–99 (1973).Google Scholar
  12. [12]
    M. S. Krishnamoorthy and N. Deo, Node-deletion NP-complete problems, SIAM J. Comput., 8, 4, pp. 619–625 (1979).Google Scholar
  13. [13]
    D. G. Kirkpatrick and P. Hell, On the completeness of a generalized matching problem, Proc. 10th ACM Symp. on Theory of Computing (1978).Google Scholar
  14. [14]
    T. Kikuno, N. Yoshida and Y. Kakuda, Dominating set in planar graphs, Tech. Report AL79-9, Inst. Elect. Commun. Eng. Japan, pp. 21–30 (1979).Google Scholar
  15. [15]
    J. M. Lewis, On the complexity of the maximum subgraph problem, Proc. of the 10th ACM Symp. on Theory of Computing, pp. 265–274 (1978).Google Scholar
  16. [16]
    C. L. Monma and J. B. Sidney, Sequencing with series-parallel procedure constraints, TR 347, Sch. of OR/IE, Cornell University (1979).Google Scholar
  17. [17]
    E. F. Moore and C. E. Shannon, Reliable circuits using reliable relays I–II, J. Franklin Inst., 262, 3, p. 191, and 4, p. 281 (1956).Google Scholar
  18. [18]
    T. Nishizeki and N. Saito, Necessary and sufficient condition for a graph to be three-terminal series-parallel-cascade, J. of Combinatorial Theory B, 24, 3, pp. 344–361 (1978).Google Scholar
  19. [19]
    T. Nishizeki, K. Takamizawa and N. Saito, Algorithms for detecting series-parallel graphs and D-charts, Trans. of Inst. Elect. Commun. Eng. Japan, 59, 3, pp. 259–260 (1976).Google Scholar
  20. [20]
    N. Tomizawa, On a specialization sequence from general matroids to ladder graphs with special emphasis on the characterization of ladder matroids, RAAG Research Notes, Third Series, No. 191 (1973).Google Scholar
  21. [21]
    J. Valdes, R. E. Tarjan and E. L. Lawler, The recognition of series-parallel digraph, Proc. of 11th Ann. ACM Symp. on Theory of Computing, 1979.Google Scholar
  22. [22]
    T. Watanabe, T. Ae and A. Nakamura, On the node cover problem of planar graphs, Proc. of 1979 ISCAS, pp. 78–81 (1979).Google Scholar
  23. [23]
    M. Yannakakis, Node-and edge-deletion NP-complete problems, Proc of the 10th ACM Symp. on Theory of Computing, pp. 253–264 (1978).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • K. Takamizawa
    • 1
  • T. Nishizeki
    • 2
  • N. Saito
    • 2
  1. 1.Central Research Labs.Nippon Electric Co. Ltd.KawasakiJapan
  2. 2.Department of Electrical Communications Faculty of EngineeringTohoku UniversitySendaiJapan

Personalised recommendations