Many-body quantum mechanics as symplectic dynamics

  • David J. Rowe
Canonical Transformation and Quantum Mechanics
Part of the Lecture Notes in Physics book series (LNP, volume 135)


Coherent State Poisson Bracket Symplectic Manifold Slater Determinant Coherent State Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    D.J. Rowe, A. Ryman and G. Rosensteel, ‘Many-body quantum mechanics as a symplectic dynamical system’ (Physical Review, to be published).Google Scholar
  2. (2).
    D.J. Rowe and A. Ryman, ‘Coherent state representation of many-fermion quantum mechanics’ (Physical Review Letters, to be published).Google Scholar
  3. (3).
    D.J. Rowe, Nucl. Phys. A107 (1968) 99; F. F. Catara, M. Di Toro, E. Pace and G. Schiffrer, Nuovo Cim. 11A (1972) 733; G. Fonte, R. Mignani and G. Schiffrer, Commun. Math. Phys. 33 (1973) 293.ADSGoogle Scholar
  4. (4).
    D.J. Rowe, ‘Nuclear Collective Motion’ (Methuen, London, 1970).Google Scholar
  5. (5).
    P. Bouche, B. Giraud and Ph. Quentin (eds), ‘Time-Dependent Hartree Fock Method’ (Orsay-Saclay, 1979).Google Scholar
  6. (6).
    D.J. Rowe and R. Basserman, Nucl. Phys. A220 (1974) 404; Can. Journ. Phys. 54 (1976) 1941; G. Holzwarth and T. Yukawa, Nucl. Phys. A219 (1974) 125; F. Villars, Nucl. Phys. A285 (1977) 269; T. Marumori, Prog. Theor. Phys. 57 (1977) 112; K. Goeke, P.-G. Reinhard, Ann. Phys. 112 (1978) 328; M. Baranger and M. Veneroni, Ann. Phys. 114 (1978) 123.ADSGoogle Scholar
  7. (7).
    B. Kostant, ‘Lecture notes in mathematics’ (Springer, Berlin 1970); J.-M. Souriau, 'structure des systemes dynamiques’ (Dunod, Paris, 1970); D.J. Simms and N.M.J. Woodhouse, ‘Lectures on geometric quantization’ (Springer-Verlag, New York, 1976).Google Scholar
  8. (8).
    R. Abraham and J.E. Marsden, ‘Foundations of Mechanics’ (Benjamin/Cummings, Reading, Mass., 1978).zbMATHGoogle Scholar
  9. (9).
    D.J. Rowe, Rev. Mod. Phys. 40 (1968) 153; Nucl. Phys. A107 (1968) 99.CrossRefADSGoogle Scholar
  10. (10).
    A.M. Perelomov, Commun. Math. Phys. 26 (1972) 222.zbMATHMathSciNetCrossRefADSGoogle Scholar
  11. (11).
    E. Onofri, Journ. Math. Phys. 16 (1975) 1087.zbMATHMathSciNetCrossRefADSGoogle Scholar
  12. (12).
    R.J. Glauber, Phys. Rev. 131 (1963) 2766.MathSciNetCrossRefADSGoogle Scholar
  13. (13).
    P.A.M. Dirac, Can. Journ. Math. 2 (1950) 129.zbMATHMathSciNetCrossRefGoogle Scholar
  14. (14).
    D.J. Rowe and S.S.M. Wong, Nucl. Phys. A. 153 (1970) 561.CrossRefADSGoogle Scholar
  15. (15).
    V. Bargmann, Commun. Pure and Appl. Math. 14 (1961) 187; Proc. Natl. Acad. Sci. U.S. 48 (1962) 199; I.E. Segal, Illinois J. Math. 6 (1962) 520.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • David J. Rowe
    • 1
  1. 1.Department of PhysicsUniversity of TorontoTorontoCanada

Personalised recommendations