Advertisement

A uniqueness result for the segal quantization of a classical system with symmetries

  • Franco Gallons
  • Antonio Sparzani
Canonical Transformation and Quantum Mechanics
Part of the Lecture Notes in Physics book series (LNP, volume 135)

Abstract

In the Segal approach, a classical system with symmetries can be quantized in a straightforward way when a complexification operator exists for both the symplectic space that describes the phase space and the symplectic transformations that represent the symmetry group of the system. If such group fulfils a real irreducibility condition, the complexification operator is unique . Two applications, to finite dimensional systems and to free Bose fields, arc briefly described.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Segal I. E., Kgl. Danske Vidensk. Selsk. mat-fys. Medd. 31, 1 (1959).Google Scholar
  2. (1a).
    — Canad. J. Math. 13, 1 (1961).zbMATHMathSciNetCrossRefGoogle Scholar
  3. (1b).
    — Illinois J. Math. 6, 500 (1962).-Segal I. E. Mathematical Problems of Relativistic Physics (Providence, R. I.: Am. Math. Soc., 1963).zbMATHMathSciNetGoogle Scholar
  4. (2).
    Gårding L., Bull. Soc. Math. France, 88, 73 (1960) andzbMATHMathSciNetGoogle Scholar
  5. (2a).
    Nelson E., Ann. Math., 70, 572 (1959).zbMATHCrossRefGoogle Scholar
  6. (3).
    Reed M. and Simon B., Methods of Modern Mathematical Physics II. Fourier Analysis, Self-adjointness(New York: Academic, 1975).zbMATHGoogle Scholar
  7. (4).
    Gallone F. and Sparzani A., On the Uniqueness of the Segal Quantization, Preprint IFUM 241/FT Milano, June 1980.Google Scholar
  8. (5).
    Gallone F. and Sparzani A., J. Math. Phys. 20, 1375 (1979).MathSciNetCrossRefADSGoogle Scholar
  9. (6).
    Reed M. and Simon B., Methods of Modern Mathematical Physics III. Scattering Theory (New York: Academic, 1979).zbMATHGoogle Scholar
  10. (7).
    Weinless M., J. Funct. Anal., 4, 350 (1969).zbMATHMathSciNetCrossRefGoogle Scholar
  11. (8).
    Kay B. S., J. Math. Phys., 20, 1712 (1979).MathSciNetCrossRefADSGoogle Scholar

Copyright information

© springer-Verlag 1980

Authors and Affiliations

  • Franco Gallons
    • 1
  • Antonio Sparzani
    • 2
  1. 1.Istituto di Scienze Fisiche dell'UniversitàMilanoItaly
  2. 2.Istituto Nazionale di Fisica NucleareSezione di MilanoItaly

Personalised recommendations