Skip to main content

The role of surface waves in scattering processes of nuclear physics and acoustics

  • Classical Scattering Theory
  • Conference paper
  • First Online:
Mathematical Methods and Applications of Scattering Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 130))

Abstract

What classical and quantum physics have in common is that they deal with material objects, be they elastic bodies imbedded in a medium, atomic nuclei, or even elementary particles. Each of these target objects, when hit by an incident signal (a propagating wave, or a beam of particles), will be excited into eigenvibrations, and in its vibrating state will reemit waves or particles which will carry along with them information about the vibration properties of the target. We shall discuss here the mechanism by which the eigenvibrations are caused, demonstrating that the incident signal produces attenuated surface waves on the object which circumnavigate the latter repeatedly. If their wavelength is such that the surface waves match phases after each circumnavigation, then a standing surface wave is set up which represents the eigenvibration, and which causes peaks of finite width in the scattering amplitude when plotted as a function of frequency or energy, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Breit, E.P. Wigner: Phys. Rev. 49, 519 (1936)

    Google Scholar 

  2. H. Feshbach, D.C. Peaslee, V.F. Weisskopf: Phys. Rev. 71, 145 (1947)

    Google Scholar 

  3. L. Flax, L.R. Dragonette, H. Uberall: J. Acoust. Soc. Am. 63, 723 (1978)

    Google Scholar 

  4. K.J. Diercks, R. Hickling: J. Acoust. Soc. Am. 41, 380 (1967)

    Google Scholar 

  5. W.G. Neubauer, R.H. Vogt, L.R. Dragonette: J. Acoust. Soc. Am. 55, 1123 (1974)

    Google Scholar 

  6. L.R. Dragonette: Thesis, Catholic University, (1978) and Naval Research Laboratory Report 8216, (September, 1978); J. Acoust. Am. 65, 1570 (1979)

    Google Scholar 

  7. H. Uberall, L.R. Dragonette, L. Flax: J. Acoust. Soc. Am. 61, 711 (1977)

    Google Scholar 

  8. J.D. Murphy, E.D. Breitenbach, H. Uberall: J. Acoust. Soc. Am. 64, 677 (1978)

    Google Scholar 

  9. J.D. Murphy, J. George, H. Uberall: J. Wave Motion 1, 141 (1979)

    Google Scholar 

  10. J.D. Murphy, J. George, A. Nagl, H. Uberall: J. Acoust. Soc. Am. 65, 368 (1979)

    Google Scholar 

  11. K.A. Sage, J. George, H. Uberall: J. Acoust. Soc. Am. 65, 1413 (1979)

    Google Scholar 

  12. H. Uberall, J. George, A.R. Farhan, G. Mezzorani, A. Nagl, K.A. Sage: J. Acoust. Soc. Am., in press

    Google Scholar 

  13. G. Gaunaurd, K.P. Scharnhorst, H. Uberall: J. Acoust. Soc. Am. 65, 573 (1979)

    Google Scholar 

  14. R. Fiorito, H. Uberall: J. Acoust. Soc. Am. 65, 9 (1979)

    Google Scholar 

  15. R. Fiorito, W. Madigosky, H. Uberall: J..Acoust. Soc. Am., submitted (1979)

    Google Scholar 

  16. A.J. Haug, S.G. Solomon, H. Oberall: J. Sound Vib. 57, 51 (1978)

    Google Scholar 

  17. G.C. Gaunaurd, H. Uberall: J. Acoust. Soc. Am. 63, 1699 (1978)

    Google Scholar 

  18. G.C. Gaunaurd, K.P. Scharnhorst, H. Uberall: J. Acoust. Soc. Am. 64, 1211 (1978)

    Google Scholar 

  19. G.C. Gaunaurd, H. Uberall: J. Appl. Phys., in press

    Google Scholar 

  20. D. Brill, G.C. Gaunaurd, H. Uberall: J. Acoust. Soc. Am., submitted (1979)

    Google Scholar 

  21. G.C. Gaunaurd, H. Überall: Science, in press

    Google Scholar 

  22. G.C. Gaunaurd, H. Oberall: J. Appl. Mech., to be published

    Google Scholar 

  23. G.C. Gaunaurd, H. Uberall: Appl. Phys., submitted (1979)

    Google Scholar 

  24. L. Flax, H. Überall: J. Acoust. Soc. Am., submitted (1979)

    Google Scholar 

  25. E. Tanglis, G. Gaunaurd, H. Uberall: J. Acoust. Soc. Am., submitted (1979)

    Google Scholar 

  26. F.E. Bertrand: Annu. Rev. Nucl. Sci. 26, 457 (1976)

    Google Scholar 

  27. M. Goldhaber, E. Teller: Phys. Rev. 74, 1046 (1948)

    Google Scholar 

  28. A.R. Farhan, J. George, and H. Oberall: Nucl. Phys. A305, 189 (1978)

    Google Scholar 

  29. K.W. McVoy: Phys. Rev. C3, 1104 (1971)

    Google Scholar 

  30. V.A. Matveev: “Hydrodynamic model of collective resonances in hadronic matter,” Fermi National Accelerator Laboratory preprint FERMILAB-pub-76/52-THY (June, 1976); B. Schrempp, F. Schrempp: “Strong interactions-a tunneling phenomenon,” CERN preprint Ref. TH 2573-CERN (September, 1978)

    Google Scholar 

  31. R. Raphael, H. Uberall, C. Werntz: Phys. Rev. 152, 899 (1966)

    Google Scholar 

  32. H. Uberall: Phys. Rev. B137, 502 (1965); Nuovo Cimento 41, 25 (1966)

    Google Scholar 

  33. A. Goldmann, M. Stroetzel: Phys. Lett. 31B, 287 (1970)

    Google Scholar 

  34. H. Uberall: Electron Scattering from Complex Nuclei (Academic, New York, 1971).

    Google Scholar 

  35. R.G. Satchler: Nucl. Phys. A195, 1 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

John A. DeSanto Albert W. Sáenz Woodford W. Zachary

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag

About this paper

Cite this paper

Überall, H. (1980). The role of surface waves in scattering processes of nuclear physics and acoustics. In: DeSanto, J.A., Sáenz, A.W., Zachary, W.W. (eds) Mathematical Methods and Applications of Scattering Theory. Lecture Notes in Physics, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-10023-7_93

Download citation

  • DOI: https://doi.org/10.1007/3-540-10023-7_93

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10023-2

  • Online ISBN: 978-3-540-38184-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics