On the physics of Circinus X-1. II. Eccentricity, mass transfer rates, secular orbital effects, possible γ-ray burst, and a possible origin for circinus X-1

  • R. F. Haynes
  • D. L. Jauncey
  • I. Lerche
  • P. G. Murdin
  • G. D. Nicolson
  • S. S. Holt
  • L. J. Kaluzienski
  • R. M. Thomas
Theoretical aspects of relativistic astrophysics
Part of the Lecture Notes in Physics book series (LNP, volume 124)


Simultaneous radio and X-ray observations of the flare from Circinus X-1 on 1978 February 1-5 are reported and then accounted for within the frame work of the basic physical picture given in Lecture I. The latest data hone the parameters detailing the basic physical processes occurring. The 5 GHz radio data are used to derive an orbital eccentricity, eccentricity, e ≅ 0.72±0.01 for the Cir X-1 binary system.Observational evidence is presented here for both stellar wind and Roche lobe overflow accretion of matter on to the compact star.The steady-state stellar wind mass loss from the OB supergiant is estimated to be some 5 × 10−6 Mg yr−1, 3.5 × 10−8 M0 yr−1 but only lasts ∼2–3 d near periastron.The corresponding mass loss is some 10−10 MD per orbit. For the first 0.5 d of this time, before Roche lobe overflow commences, stellar wind accretion dominates the mass transfer.Temporal ephemerides for periastron in the orbit are estimated using both the radio data and the X-ray data. Very close agreement is found, the ephemerides differing by only 0.05 d. The X-ray cut-off time on 1978, 1st , February agrees well with the estimated time when stellar wind mass transfer first generates enhanced radio emission at 5 GHz. Our model for Cir X-1, used in conjunction with the 5 GHz data, yields a period for the orbit of the compact star round the primary star. The shape of the radio light curve towards the end of the flare gives insight into the physical conditions in the radio emitting region when mass transfer by Roche lobe overflow abruptly ceases. our model for Cir X-1 is extended in this paper to include: (i) effects caused by libration of the orbit of the binary system, which results from the primary star's spin axis being inclined to the orbital angular momentum vector; (ii) variations in the X-ray and radio flare light curves caused by a bulge in the rotating OB supergiant. These effects are discussed in terms of the available observations. We also speculate on the possibility of seeing periodic γ-ray bursts from Cir X-1, and on a possible origin for the Cir X-1 system.


Neutron Star Radio Emission Stellar Wind Compact Star Primary Star 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Radiophysics Publication RPP 2264, December (1978).

  1. 1.
    Kaluzienski, L.J., Holt, S.S., Boldt, E.A. and Serlemitsos, P.J., Astrophys.J., 208, L71 (1976).Google Scholar
  2. 2.
    Haynes, R.F., Jauncey, D.L., Murdin, P.G., Goss, W.M., Longmore, A.J., Simons, L.W.J., Milne, D.K. and Skellern, D.J., Mon. Not.R.Astron.Soc., 185, 661Google Scholar
  3. 3.
    Haynes, R.F., Lerche, I. and Murdin, P.G., Mon.Not.R.Astron.Soc., (submitted) (1979).Google Scholar
  4. 4.
    Glass, J.S., IAU Circular 3095, (1977).Google Scholar
  5. 5.
    Glass, J.S., IAU Circular 3106, (1977).Google Scholar
  6. 6.
    Kaluzienski, L.J. and Holt, S.S., IAU Circular 3099, (1977).Google Scholar
  7. 7.
    Haynes, R.F., Jauncey, D.L., Lerche, I. and Murdin, P.G., Aust.J.Phys., 32, 43 (1979).Google Scholar
  8. 8.
    Shakura, N.I. and Sunyaev, R.A., Astron.Astrophys., 24, 337 (1973).Google Scholar
  9. 9.
    Whelan, J.A.J., Mayo, S.K., Wickramasinghe, D.T., Murdin, P.G., Peterson, B.A., Hawarden, T.G., Longmore, A.J., Haynes, R.F., Goss, W.M., Simons, L.W., Caswell, J.L., Little, A.G. and McAdam, W.B., Mon.Not.R.Astron.Soc., 181, 259 (1977).Google Scholar
  10. 10.
    Caswell, J.L. and Lerche, I., Aust.J.Phys., 32, 79 (1979)Google Scholar
  11. 11.
    Lerche, I., Some aspects of supernova theory: implosion, explosion and expansion, This volume (1979).Google Scholar
  12. 12.
    Woltjer, L., Annu.Rev.Astron.Astrophys., 10, 129 (1972).Google Scholar
  13. 13.
    amers, H.J. and Morton, D.C., Astrophys.J.Suppl.Ser., 32, 715 (1976).Google Scholar
  14. 14.
    Davison, P.J.N. and Tuohy, I.R., Mon.Not.R.Astron.Soc., 173, 33P (1975).Google Scholar
  15. 15.
    Kopal, Z., Close Binary Systems, Chapman and Hall, London (1959).Google Scholar
  16. 16.
    Kraft, R.P., In Neutron Stars, Black Holes and Binary X-Ray Sources, (Eds H. Gursky and R. Ruffini), Reidel, Dordrecht (1975).Google Scholar
  17. 17.
    Petterson, J.A., Astrophys.J., 224, 625 (1978).Google Scholar
  18. 18.
    Forman, W. and Jones, C., Bull.Amer.Astron.Soc., 8, 541 (1977).Google Scholar
  19. 19.
    Bignami, G.F., Ventura, A.D., Maccagni, D. and Stiglitz, R.A., Astron.Astrophys., 57, 309 (1977).Google Scholar
  20. 20.
    Chevalier, R.A., Astrophys.J., 198, 189 (1975).Google Scholar
  21. 21.
    Sterne, T.E., Mon.Not.R.Astron.S'oc., 99, 541 (1939).Google Scholar
  22. 22.
    Iben, Icko, Jr., Astrophys.J., 143, 516 (1966).Google Scholar
  23. 23.
    Lamb, R.C., Fichtel, C.E., Hartman, R.C., Kniffen, D.A. and Thomson, D.J., Astrophys.J.(Lett), 212, L63 (1977).Google Scholar
  24. 24.
    Gregory, P.C. et al. (and authors of related papers), Nature Phys.Sci., 239, 113ff (1972).Google Scholar
  25. 25.
    Apparao, K.M.V., Mon.Not.R.Astron.Soc., 179, 763 (1977).Google Scholar
  26. 26.
    Fabian, A.C., Blandford, R.D. and Hatchett, S.P., Nature, 266, 512 (1977).Google Scholar
  27. 27.
    Ginzburg, V.L. and Syrovatskii, S.I., Origin of Cosmic Rays, Pergamon (1964).Google Scholar
  28. 28.
    Coe, M.J., Engel, A.R. and Quenby, J.J., Nature, 262, 563 (1976).Google Scholar
  29. 29.
    Thomas, R.M., Duldig, M.L., Haynes, R.F. and Murdin, P.G., Mon.Not.R.Astron.Soc., 185, 29P (1978).Google Scholar
  30. 30.
    Akhiezer, A.I. and Berestetskii, V.B., Quantum Electrodynamics, Interscience, New York, (1965)Google Scholar
  31. 31.
    Klebesadel, R.W. and Strong, I.B., Astrophys.Space Sci., 42, 3 (1976).Google Scholar
  32. 32.
    Harrison, E.R. and Tademaru, E., Astrophys.J., 201, 447 (1975).Google Scholar
  33. 33.
    Caswell, J.L. and Goss, W.M., Astron.Astrophys., 32, 209 (1974).Google Scholar
  34. 34.
    Taylor, J.H. and Manchester, R.N., Pulsars, Freeman San Francisco (1977). *** DIRECT SUPPORT *** A3418082 00004Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • R. F. Haynes
    • 1
  • D. L. Jauncey
    • 1
  • I. Lerche
    • 2
  • P. G. Murdin
    • 3
  • G. D. Nicolson
    • 4
  • S. S. Holt
    • 5
  • L. J. Kaluzienski
    • 5
  • R. M. Thomas
    • 6
  1. 1.Division of RadiophysicsCSIROSydneyAustralia
  2. 2.Department of PhysicsUniversity of ChicagoChicagoUSA
  3. 3.Anglo-Australian ObservatorySydneyAustralia
  4. 4.CSIR, National Institute for Telecommunications ResearchJohannesburg
  5. 5.Goddard Space Flight CentreGreenbeltUSA
  6. 6.Department of PhysicsUniversity of TasmaniaHobartAustralia

Personalised recommendations