Skip to main content

Methanol as carbon source for biomass production in a loop reactor

  • Conference paper
  • First Online:
Book cover Advances in Biochemical Engineering, Volume 17

Part of the book series: Advances in Biochemical Engineering ((ABE,volume 17))

Abstract

Literature concerning mass transfer in bubble columns and loop reactors contains numerous data on small-scale units. On the other hand, data on the production scale, i.e. reactor diameters exceeding 1 m, are scarce. The present work tries to apply the data that are available to the calculation of a loop reactor. The metabolic reaction itself is performed in each single cell. A careful consideration of the statistics in cell-medium systems is used as a necessary background for an economic reactor design. Based on this fact, the actual supply of each cell is discussed for the growth of Methylomonas clara on methanol.

Most of the literature takes for granted that the calculation of gas-liquid oxygen transfer, i.e. the transportation from the bubble to the liquid layer, describes the real problem. It is shown by reasonable assumptions that the further oxygen transport from the gas-liquid film to each individual microorganism must be considered as well. In addition, the importance of macro- and micro-mixing for the scale-up procedure are pointed out.

For a medium-sized reactor of 300 m3 total volume, the main features of scale-up calculations are considered. Little data being published, the zones of critically low supply are studied using rough estimates. The advantages and limitations of an air-lift loop reactor compared to those of stirred tank reactors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. Abbott, B. J., Clamen, A.: Biotechnol. Bioeng. 15, 117 (1973)

    Article  PubMed  Google Scholar 

  2. Anthony, C: J. Gen. Microbiol. 104, 91 (1973)

    Google Scholar 

  3. Commercial prospectus: Aerzner Schraubenverdichter. Aerzner Maschinenfabrik, D 3251 Aerzen

    Google Scholar 

  4. Aiba, S., Humphrey, A. E., Millis, N. F.: Biochem. Eng., p. 22. New York: Academic Press 1973

    Google Scholar 

  5. Anonymus: Process Biochem. p. 30, Jan./Febr. 1977

    Google Scholar 

  6. Astuana, H. et al.: Biotechnol. Bioeng. 13, 923 (1971)

    Article  Google Scholar 

  7. Babij, T., Ralph, B. J., Rickard, P. A. D.: Proceedings of the Internat. Symp. Microbial Growth on C1-Compounds, p. 213, Tokyo, Japan 1975

    Google Scholar 

  8. Behringer, H.: Die Flüssigkeitsförderung nach dem Prinzip der Mammutpumpe. Dissertation TH Karlsruhe 1930

    Google Scholar 

  9. Blakebrough, N.: Chem. Eng. 258, 58 (1972)

    Google Scholar 

  10. Bender, R.: Hoechst AG, private communication 1976

    Google Scholar 

  11. Blenke, H., Bohner, K., Hirner, W.: Verfahrenstechnik 3, 444 (1969)

    Google Scholar 

  12. Blenke, H., Prinzing, P.: Chem.-Ing.-Techn. 41, 233 (1969)

    Article  Google Scholar 

  13. Blenke, H., Hirner, W.: VDI-Berichte 218, 549 (1974)

    Google Scholar 

  14. Blenke, H.: VDI-Berichte 277, 127 (1977)

    Google Scholar 

  15. Brooks, J. D., Meers, J. L.: J. Gen. Mikrobiol. 77, 513 (1973)

    Google Scholar 

  16. Byrom, D., Onsby, J. C: I. Intersectional Congr. 77, 513 (1974)

    Google Scholar 

  17. Cardini, F.: Yeast from Methanol. 5th Internat. Symp., Abstr., p. 202. Berlin: Verlag Ver-suchs-und Lehranstalt für Spiritusfabrikation 1976

    Google Scholar 

  18. Chalfan, Y., Mateles, R. I.: Appl. Microbiol. 135, 23 (1972)

    Google Scholar 

  19. Colby, J., Zatman, L. J.: Biochem. J. 148, 513 (1975)

    PubMed  Google Scholar 

  20. Cooney, C. L.: Biotechnol. Bioeng. 11, 269 (1969)

    Article  PubMed  Google Scholar 

  21. Cooney, C. L.: Ferm. Technol. Today 491, 183 (1975)

    Google Scholar 

  22. Cooney, C. L., Levine, D. W.: SCP-production from Methanol by yeast, SCP II (S. R. Tannen-baum, D. I. C. Wang, eds.), MIT Press. London, 402 (1975)

    Google Scholar 

  23. Cooney, C. L., Levine, D. W.: Adv. Appl. Microbiol. 15, 337 (1972)

    PubMed  Google Scholar 

  24. Cooper, P. G., Silver, P. S.: Chem. Eng. Proc. 71, 9 (1975)

    Google Scholar 

  25. Danckwerts, P. V.: Ind. Eng. Chem. 43, 1460 (1951)

    Google Scholar 

  26. Van Dijken, J. P., Veenhuis, M., Harder, W.: Abstr. p. 387. V. Int. Ferm. Symp., Berlin 1976

    Google Scholar 

  27. Dostalek, M., Molin, N.: Studies of Biomass Production of Methanol Oxidizing Bacteria. SCP II: S. R. Tannenbaum, D. I. C. Wang (eds.), Chapter 19, p. 385. London: MIT Press 1975

    Google Scholar 

  28. Dunn, J., Blanch, H. W., Russell, T. W. F.: Chem. Rundschau 27, 3.4, 17 (1974)

    Google Scholar 

  29. Ebner, H.: Abstr. p. 71. 3. Symp. Technol. Mikrobiol, Berlin 1973

    Google Scholar 

  30. Eck, B.: Techn. Strömungslehre. Berlin: Springer 1958

    Google Scholar 

  31. Einsele, A.: Abstr. p. 69. V. Internal. Ferm. Symp., Berlin 1976

    Google Scholar 

  32. Faust, U.: J. Ferm. Technol. 55, 6 (1977)

    Google Scholar 

  33. Faust, U., Dorsemagen, B., Präve, P., Sukatsch, D. A., Zepf, Kh.: Abstr. p. 203. V. Internat. Ferm. Symp., Berlin 1976

    Google Scholar 

  34. Faust, U.: 1. Symp. Mikrobielle Proteingewinnung, p. 217. Braunschweig: Verlag Chemie 1975

    Google Scholar 

  35. Förstel, H., Schleser, G.: V. Internat. Ferm. Symp., p. 484, Berlin 1976

    Google Scholar 

  36. Freedman, W., Davidson, J. F.: Trans. Instn. Chem. Engrs. 47, 251 (1969)

    Google Scholar 

  37. Gasner, L. L.: Biotechnol. Bioeng. 16, 1179 (1974)

    Article  Google Scholar 

  38. Giacobbe, F.: Economic Evaluation of New Trends in SCP Manufacture. ACS National Meeting, Philadelphia 1975

    Google Scholar 

  39. Goldberg, I.: Process Biochem. 11, 12 (1977)

    Google Scholar 

  40. Gow, J. S. et al.: SCP II. In: S. R. Tannenbaum, D. I. C. Wang (eds.), Chapter 18, p. 370. London: MIT Press 1975

    Google Scholar 

  41. Häggström, L.: Appl. + Environm. Microbiol. 33, 567 (1977)

    Google Scholar 

  42. Harrison, D. E. F., Wilkinson, T. G.: J. Appl. Batereol 36, 309 (1973)

    Google Scholar 

  43. Harrison D. E. F., Topiwala, H. H., Hamer, G.: Proc. IV. IFS, Ferm. Technol Today 491 000 (1972)

    Google Scholar 

  44. Hassan, I. T. M., Robinson, C. W.: AIChE J. 23, 48 (1977)

    Google Scholar 

  45. Hatch, R. T.: In Single Cell Protein II, p. 46. In: S. R. Tannenbaum, D. I. C. Wang (eds.), p. 46. London: MIT Press 1975

    Google Scholar 

  46. Hamer, G., Topiwala, H. H., Harrison, D. E. F.: Erzeugung von Einzellerprotein aus Erdgas, gwf-gas/erdgas 114, 531 (1973)

    Google Scholar 

  47. Harrison, D. E. F.: Making protein from methane. Chemtech. 9, 572 (1976)

    Google Scholar 

  48. Heine, H.: Dechema Monogr. 71, 53 (1954)

    Google Scholar 

  49. Herbert, D.: Stoichiometric Aspects of Microbial Growth. In: Cont. Culture, VI. Dean, Ellwood, Evans, Menning Ellis Harward Publish., Chichester 1976

    Google Scholar 

  50. Hirner, W.: Dissert. TU Stuttgart 1973

    Google Scholar 

  51. Hirner, W., Blenke, W.: Chem.-Ing.-Techn. 46, 353 (1974)

    Article  Google Scholar 

  52. Holve, W. A.: Process Biochem. 12 (1976)

    Google Scholar 

  53. Huang, S. Y., Yeh, M. C, Lion, K. T.: V. Internat. Ferm. Symp. Berlin 1976, Abstr. p. 68

    Google Scholar 

  54. ICI-Educational Publications, New Potein Appendix 1, The Kynoch Press, Birmingham

    Google Scholar 

  55. Kanazawa, M.: In: SCP II. S. R. Tannenbaum, D. I. C. Wang (eds.), p. 438. London: MIT Press 1975

    Google Scholar 

  56. Katinger, H. W. D.: Abstr., p. 72. V. Internat. Ferm. Symp. Berlin 1976

    Google Scholar 

  57. Katinger, H. W. D.: Berichte, Verlag Versuchs-und Lehranstalt für Gärungsgewerbe Berlin, p. 101, 3. Symp. Techn. Mikrobiologie, Berlin 1973

    Google Scholar 

  58. Knecht, R.: Process Biochem. 12, 4(1977)

    Google Scholar 

  59. Hubbart, D. W., Williams, C. N.: V. Internat. Ferm. Symp., Berlin 1976, Abstr. p. 71

    Google Scholar 

  60. Kuraishi, M., Matsuda, N.: Microbial Growth on C1-Compounds, p. 231. Soc. Ferm. Techn., Japan 1975

    Google Scholar 

  61. Langmann, H., Taubert, C: Verfahrenstechnik 2, 10, 417 (1968)

    Google Scholar 

  62. Kosaric, N., Zajic, J. E.: Adv. Biochem. Eng. 3, 89 (1974)

    Google Scholar 

  63. Lefrançois, L., Revuz, B.: Dechema-Monogr. 70, 1327, 91 (1972)

    Google Scholar 

  64. Lehnert, J., Niewert, E.: Verfahrenstechnik 9, 382 (1969)

    Google Scholar 

  65. Lehnert, J.: Verfahrenstechnik 2, 58 (1972)

    Google Scholar 

  66. Levine, D. W., Cooney, C. L.: Appl. Microbiol. 26, 6, 982 (1973)

    PubMed  Google Scholar 

  67. Lipinski, E. S., Lichtfield, J. H.: Food Technol. 28 (5), 16 (1974)

    Google Scholar 

  68. Littlehailes, J. D.: 1. Symposium Mikrobiol. Proteingewinnung, p. 43. Weinheim: Verlag Chemie 1975

    Google Scholar 

  69. Lücke, J.. Oels, K., Schügerl, K.: Dechema-Arbeitsausschuß, Technische Reaktion, König-stein, FRG 1976

    Google Scholar 

  70. Lücke, J., Oels, K., Schügerl, K.: Chem.-Ing.-Technik 49 (2), 161 (1977)

    Google Scholar 

  71. MacLennan, D. G.: Process Biochem. 6, 22 (1973)

    Google Scholar 

  72. Masuda, M., Nakauishi, Y., Sakakura, N.: Hydrocarbon Processing, p. 113, 1976

    Google Scholar 

  73. Miura, Y.: Adv. Biochem. Eng. 4, 3 (1976)

    Google Scholar 

  74. Müller, F.: Abstr., p. 477. IV. Internat. Spec. Symp. on Yeasts, Berlin 1976

    Google Scholar 

  75. Näper, K. H.: Physikalische Chemie. Leipzig: VEB Deutscher Verlag für Grundstoffindustrie 1969

    Google Scholar 

  76. Naguib, M.: 1. Symp. Mikrobiol. Proteingew. p. 101, Verlag Chemie 1975

    Google Scholar 

  77. Oels, K., Schügerl, K.: Abstr. p. 64. V. Internat. Ferm. Symp. Berlin 1976

    Google Scholar 

  78. Oels, K., Lücke, J., Schügerl, K.: Chem.-Ing.-Techn. 49, 1 (1977) MS 439/77

    Google Scholar 

  79. Ogata, K.: Agr. Biol. Chem. 33, 1519 (1969)

    Google Scholar 

  80. Oldshue, J. Y.: Conf. Mass Transfer Scale-up Fermentations. New York: Henniker 1977

    Google Scholar 

  81. Oldshue, J. Y. et al.: Biotechnologie, Dechema, Tutzing Symp. 1977, 81, Nr. 1678, Weinheim: Verlag Chemie 1977

    Google Scholar 

  82. Ovaskainen, T.: Process Biochem. 55, 37 (1976)

    Google Scholar 

  83. Pirt, S. J.: Principles of Microbe and Cell Cultivation. Blackwell Scient. Publ., Oxford 1976

    Google Scholar 

  84. Pollard, R., Shearer, C. J.: Chem. Eng. 2, 106 (1977)

    Google Scholar 

  85. Prokop, A., Votruba, J.: Folia Microbiol. 21, 58 (1976)

    Google Scholar 

  86. Rehm, H. J.: Industrielle Mikrobiologie. p. 5. Berlin: Springer 1967

    Google Scholar 

  87. Reule, W., Schumm, W.: Inst. Chem. Verfahrenstechnik, Stuttgart, private communication (unpublished)

    Google Scholar 

  88. Reuss, M., Wagner, F.: 3. Symposium Techn. Mikrobiol., p. 89. Berlin: Verlag VLSF 1973

    Google Scholar 

  89. Reuss, M., Sahm, H., Wagner, F.: Chem.-Ing.-Techn. 16, 669 (1974)

    Google Scholar 

  90. Reuss, M., Sahm, H., Wagner, F.: Chem.-Ing.-Techn. 46, 16, 669 (1974)

    Article  Google Scholar 

  91. Riquarts, R.: Chem.-Ing.-Techn. 49, 1 (1977)

    Article  Google Scholar 

  92. Rosenzweig, M.: Chem. Engng. 1, 62 (1974)

    Google Scholar 

  93. Schleser, G., Förstel, H.: Abstr., p. 101. V. Internat. Ferm. Symp. Berlin 1976

    Google Scholar 

  94. Schlegel, H. G.: Allgemeine Mikrobiologie, p. 137. Stuttgart: Georg Thieme 1969

    Google Scholar 

  95. Schügerl, K.: Chem.-Ing.-Techn. 49 (8), 605 (1977)

    Article  Google Scholar 

  96. Schumm, W.: Diplomarbeit Nr. 207e/th., Univers. Stuttgart 1976

    Google Scholar 

  97. Seipenbusch, R., Birckenstaedt, J. W., Schindler, F.: I. Symp. Mikrobiol. Proteingewinnung, p. 59, 1975

    Google Scholar 

  98. Seipenbusch, R.: Abstr., p. 56. V. Internat. Ferm. Symp. Berlin 1976

    Google Scholar 

  99. Siemes, W.: Chem.-Ing.-Techn. 26 (11), 614 (1954)

    Article  Google Scholar 

  100. Sittig, W.: Abstr., p. 6. V. Internat. Ferm. Symp. Berlin 1976

    Google Scholar 

  101. Sittig, W., Heine, H.: Chem.-Ing.-Techn. 8, 595 (1977)

    Google Scholar 

  102. Snedecor, B., Cooney, C. L.: Appl. Microbiol. 24, 1112 (1974)

    Google Scholar 

  103. Steiner, W., Moser, A., Lafferty, R. M.: Abstr., p. 40. V. Internat. Ferm. Symp. Berlin 1976

    Google Scholar 

  104. Sukatsch, D. A., Fritsch, W.: Abstr., p. 53. 3. Symp. Technol. Microbiol. Berlin 1973

    Google Scholar 

  105. Towell, D. G., Ackermann, G. H.: V. Europ. Symp. Chem. React. Eng., Amsterdam 1972

    Google Scholar 

  106. Tsao, G. T., Lee, D. D.: AIChE J. 21, 5, 979 (1975)

    Article  Google Scholar 

  107. Tsao, G. T.: Abstr., p. 57. V. Internat. Ferm. Symp. Berlin 1976

    Google Scholar 

  108. Wagner, F.: Experientia 33, 4, 110 (1977)

    Article  PubMed  Google Scholar 

  109. Wells, J., Giacobbe, F.: Commercial State of the Art of SCP, Internat. Board of R. & D. Conference, Washington, April 10, 1975

    Google Scholar 

  110. Zaidi, A., Deckwer, W. D., Adler, I.: Chem.-Ing.-Techn. 49 (6), 507 (1977)

    Article  Google Scholar 

  111. Ziegler, H. et al.: Abstr., p. 66. V. Internat. Ferm. Symp. Berlin 1976

    Google Scholar 

  112. Zlokarnik, M.: Adv. Biochem. Eng. 8, 133 (1978)

    Google Scholar 

  113. Schreier, K.: Chem.-Ztg. 99, 7, 323 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag

About this paper

Cite this paper

Faust, U., Sittig, W. (1980). Methanol as carbon source for biomass production in a loop reactor. In: Advances in Biochemical Engineering, Volume 17. Advances in Biochemical Engineering, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-09955-7_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-09955-7_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09955-0

  • Online ISBN: 978-3-540-39160-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics