Skip to main content

Kinetics of hydrolysis of insoluble cellulose by cellulase

  • Conference paper
  • First Online:
Advances in Biochemical Engineering, Volume 17

Part of the book series: Advances in Biochemical Engineering ((ABE,volume 17))

Abstract

The article covers the literature on the kinetic aspects of the cellulose-cellulase system. The kinetic characteristics of this heterogeneous enzyme reaction are described first and then the kinetic expressions for the hydrolysis of insoluble cellulose by cellulase. In addition, the kinetics of the reactions of cellulases with soluble cellooligosaccharides is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a:

radius of enzyme, cm

As :

surface area of the substrate, L2

b:

constant, dimensionless

C:

concentration of the product [Eqs. (47) or (51)], ML−3

CA :

concentration of amorphous cellulose, ML−3

CC :

concentration of crystalline cellulose, ML−3

CE :

concentration of enzyme in the particle, mol cm−3

CEt :

total enzyme concentration, ML−3

Ci :

cellulose concentration of component i [Eq. (6)], ML−3

Ci :

substrate fragments of chain length i, mol cm−3

Cs :

concentration of substrate in the particle, mol cm−3

CsL :

concentration of substrate in the bulk solution, mol cm−3

CI, CII :

concentrations in each phase [Eq. (21)], ML−3

D:

diffusion constant, cm2 s−1

D:

inactivated form of enzyme-substrate complex [Eq. (18)], ML−3

Ds :

average restricted diffusion coefficient of soluble substrate fragments, cm2 s−1

DSF :

average free diffusion coefficient of the fragments, m2 s −1

e:

enzyme concentration (Eq. (3)], ML−3

E:

enzyme

E*:

enzyme-substrate complex concentration, ML−3

Ea :

enzyme adsorbed on the surface [Eq. (22)], mol

E AA :

enzyme fraction active on amorphous cellulose, ML−3

E CA :

enzyme fraction active on crystalline cellulose, ML−3

E dA :

deactivated form of enzyme

Eads :

adsorbed protein, (mg protein) (mg cellulose−1)

Eads, m :

maximum adsorbed protein, (mg protein) (mg cellulose−1)

El :

number of moles of enzyme on the surface, mol

Eo :

protein concentration in the supernatant, mgrnl−1

(E o ):

initial enzyme concentration, ML−3

Et :

enzyme concentration (exo-glucanase) [Eq. (10)], ML−3

E *G :

enzyme-substrate-product complex, ML−3

ES:

enzyme-substrate complex

EP:

enzyme-product complex

f:

fraction of amorphous cellulose in the total cellulose, dimensionless

G:

glucose concentration, ML−3

G2 :

cellobiose concentration

[G 2]:

cellobiose in polymerized form [Eq. (10)]

[G 2]0 :

initial cellobiose concentration in polymerized form, mol−3

G1, G2, G3, G4 :

glucose, cellobiose, cellotriose, cellotetraose concentration, ML−3

Gx :

reducing sugar concentration, ML−3

GG:

cellobiose concentration, ML−3

[I]:

inhibitor concentration, ML−3

k:

rate constant, T−1

k′, k″:

rate constants, T−1

K:

Michaelis constant [Eqs. (47) ∼ (51)]

K:

partition coefficient [Eq. (21)]

ki :

rate constant associated with cellulose component i, T−1

Ki :

dissociation constant for the EP complex [Eq. (13)], ML−3

K′i :

modified equilibrium constant between enzyme and products [Eq. (9)]

Km :

Michaelis constant, ML−3

K′m :

modified Michaelis constant, g l−1

Kp :

constant [Eq. (1)], ml mg−1

Kp :

equilibrium constant between enzyme and products

Ks :

dissociation constant for the ES complex [Eq. (13)]

\(\bar k\) :

overall mass transfer coefficient of the substrate, cm s−1

k1, k−1, k2, k3, k4, ks, k−5 :

rate constants, T−1

Kt :

constant, dimensionless

K3 :

constant, dimensionless

K5 :

constant, dimensionless

k2, k3, k4 :

rate constants for cellobiose, cellotriose and cellotetraose

k2:2, k3:l :

rate constants

m:

constant, dimensionless

M:

mass taken up at the boundary [Eq. (51)], ML−2

n:

constant, dimensionless

n:

number of particles [Eq. (60)]

P:

product (cellobiose) concentration [Eq. (13)], mol

P, (P):

product concentration, ML−3

r:

radial position within particles, cm

R:

particle radius, cm

S:

cellulose concentration, ML−3

(S), [S]:

cellulose concentration, ML−3

[S]a :

effective substrate concentration [Eq. (7)], g I−1

Sa :

amorphous cellulose concentration, ML−3

Sc :

crystalline cellulose concentration, ML−3

[S]i :

substrate concentration at time i [Eqs. (8) and (9)], g I−1

[S]t :

total substrate concentration [Eq. (7)], g I−1

[S]i+tr :

substrate concentration at time i + t r [Eq. (8)], g I−1

S0, (S)o, (S o ), [S]0:

initial cellulose concentration, g I−1 or mol I−1

t:

time, T

tr :

time required for reducing the cellulose concentration from [S]i to [S] i+tr , T

v:

rate of reaction, ML−3 T

V:

maximum rate of reaction, ML−3 T−1

V′:

modified maximum rate of reaction [Eqs. (8) and (9)], g l−1 h−1

vi :

initial reaction rate, ML−3 T−1

VL :

volume of the liquid phase, cm3

VI :

volume of phase I at equilibrium, L3

x:

distance normal to the surface of reaction, L

X:

extent of hydrolysis, %

XA, Xc :

enzyme-substrate complex

X1, X2, X3 :

enzyme-substrate-product complex

X1m :

maximum value of X1, [Eq. (25)]

X2 :

enzyme-substrate complex [Eq. (25)]

X1 :

enzyme-substrate complex [Eq. (25)]

X1 :

enzyme-crystalline cellulose complex [Eq. (31)]

X2 :

enzyme-amorphous cellulose complex [Eq. (32)]

X3 :

enzyme-product complex [Eq. (33)]

YA, Yc :

enzyme-substrate-product complexes

α:

constant, dimensionless

γ:

pore radius of particle, cm

η:

correction factor pertaining to diffusional restriction, dimension-less

φ:

constant [Eq. (57)], dimensionless

9 References

  1. Amemura, A., Terui, G.: J. Ferment. Technol. 43, 275 (1965a)

    Google Scholar 

  2. Amemura, A., Terui, G.: J. Ferment. Technol. 43, 281 (1965b)

    Google Scholar 

  3. Arminger, W. G., Zabriskie, D. W., Humphrey, A. E., Lee, S. E., Moreira, A. R., Joly, G.: AIChE Symp. Ser. 158, 72, 11 (1976)

    Google Scholar 

  4. Brandt, D., Hontz, L., Mandels, M.: AIChE symp. Ser. 69, No. 133, 127 (1973)

    Google Scholar 

  5. Brown, D. E., Waliuzzaman, M.: In: Proc. Bioconversion Symp. T. K. Ghose (Ed.) p. 351. New Delhi: IIT1977

    Google Scholar 

  6. Cowling, E. B.: In: Biotech. Bioeng. Symp. No. 5, C. R. Wilke (Ed.), p. 163. New York: Interscience 1975

    Google Scholar 

  7. Cowling, E. B., Kirk, T. K.: In: Biotech. Bioeng. Symp. No. 6, E. L. Gaden, Jr., M. H. Mandels, E. T. Reese, L. A. Spano (Edst), p. 95, New York. Interscience 1976

    Google Scholar 

  8. Dwivedi, C. P., Ghose, T. K.: J. Ferment. Technol. 57, 15 (1979)

    Google Scholar 

  9. Eriksson, K. E., Hollmark, B. H.: Arch. Biochem. Biophys. 133, 233 (1969)

    PubMed  Google Scholar 

  10. Fan, L. T., Lee, Y.-H., Beardmore, D. H.: In: Adv. in Biochem. Eng. Vol. 14, A. Fiechter (Ed.), p. 101. Berlin: Springer 1980

    Google Scholar 

  11. Fan, L. T., Lee, Y.-H., Beardmore, D. H.: Biotech. Bioeng. 22, 111 (1980)

    Article  Google Scholar 

  12. Ghose, T. K.: Biotech. Bioeng. 11, 239 (1969)

    Article  Google Scholar 

  13. Ghose, T. K., Bisaria, V. S.: Biotech. Bioeng. 21, 131 (1979)

    Google Scholar 

  14. Ghose, T. K., Bisaria, V. S., Dwivedi, C. P.: In: Proced. V. Int. Ferment. Symp., H. Dell-weg (Ed.), p. 439, Berlin 1976

    Google Scholar 

  15. Ghose, T. K., Das, K.: In: Adv. in Biochem. Eng. Vol. 1., T. K. Ghose, A. Fiechter (Eds.), p. 55. Berlin: Springer 1971

    Google Scholar 

  16. Gong, C. S., Ladish, M. R., Tsao, G. T.: Biotech. Bioeng. 19, 959 (1977)

    Article  Google Scholar 

  17. Halliwell, G.: Biochem. J. 79, 185 (1961)

    PubMed  Google Scholar 

  18. Halliwell, G.: Biochem. J. 95, 270 (1965)

    PubMed  Google Scholar 

  19. Howell, J. A., Mangat, M.: Biotech. Bioeng. 20, 847 (1978)

    Article  Google Scholar 

  20. Howell, J. A., Stuck, J. D.: Biotech. Bioeng. 17, 873 (1975)

    Article  Google Scholar 

  21. Huang, A. A.: Biotech. Bioeng. 17, 1421 (1975a)

    Article  Google Scholar 

  22. Huang, A. A.: In: Biotech. Bioeng. Symp. No. 5, C. R. Wilke (Ed.), p. 245. New York: Interscience 1975b

    Google Scholar 

  23. Huang, A. A.: Unpublished Report of U.S. Army Natick Laboratory, 1975c

    Google Scholar 

  24. Karrer, P., Schubert, P.: Helv. Chim. Acta, 9, 893 (1926)

    Google Scholar 

  25. Karrer, P., Schubert, P., Wehrli, W.: Helv. Chim. Acta, 8, 797 (1925)

    Google Scholar 

  26. Kim, C: In: ARO Report 74-2, Proceedings of the 1974 Army Numerical Analysis Conference, p. 507. The Office of the Chief of Research, Development and Acquisition 1974

    Google Scholar 

  27. King, K. W.: Biochem. Biophys. Res. Commun. 24, 295 (1966)

    Article  PubMed  Google Scholar 

  28. King, K. W.: Arch. Biochem. Biophys. 120, 462 (1967)

    PubMed  Google Scholar 

  29. Ladish, M. R.: Ph. D. Dissertation, Enzymatic Hydrolysis of Cellulose: Kinetics and Mechanism of Selected Purified Cellulase Component. Purdue University 1977

    Google Scholar 

  30. Lee, S. E.: Ph. D. Dissertation, Modeling and Kinetic Studies of Cellulose Biodegradation Reactions. Philadelphia: University of Pennsylvania 1977

    Google Scholar 

  31. Lee, S. E., Armiger, W. B., Watteeuw, C. M., Humphrey, A. E.: Biotech. Bioeng. 20, 141 (1978)

    Article  Google Scholar 

  32. Lee, Y.-H., Fan, L. T.: In: Adv. in Biochem. Eng. Vol. 17, A. Fiechter (Ed.), p. 131. Berlin: Springer 1980

    Google Scholar 

  33. Li, L. H., Flora, R. M., King, K. W.: Arch. Biochem. Biophys. 111, 439 (1965)

    Article  PubMed  Google Scholar 

  34. Mandels, M., Kostick, J., Parizek, R.: J. Polymer Sci.: Part C, No. 36, 445 (1971)

    Google Scholar 

  35. Mandels, M., Reese, E. T.: In: Advances in Enzymic Hydrolysis of Cellulose and Related Material, E. T. Reese (Ed.), p. 115. New York: Pergamon 1963

    Google Scholar 

  36. Mangat, M. S.: Ph. D. Dissertation, A Kinetic Study of the Enzymatic Hydrolysis of Cellulose. State University of New York at Buffalo, Buffalo 1955

    Google Scholar 

  37. Marsh, C. A.: Biochim. Biophys. Acta, 122, 367 (1966)

    PubMed  Google Scholar 

  38. Merchant, M. V.: TAPPI, 40, 771 (1957)

    Google Scholar 

  39. McLaren, A. D.: Enzymologia, 26, 237 (1963)

    PubMed  Google Scholar 

  40. McLaren, A. D., Packer, L.: In: Advances in Enzymology, F. F. Nord (Ed.), Vol. 33, p. 245. New York: Interscience 1970

    Google Scholar 

  41. Miyamoto, S., Nisizawa, K.: J. Veterinary Soc. Army Japan, 396, 778 (1942)

    Google Scholar 

  42. Nisizawa, K., Hashimoto, Y., Shibata, Y.: In: Advances in Enzymic Hydrolysis of Cellulose and Related Material. E. T. Reese (Ed.), p. 171. New York: Pergamon 1963

    Google Scholar 

  43. Okazaki, M., Moo-Young, M.: Biotech. Bioeng. 20, 637 (1978)

    Google Scholar 

  44. Peitersen, N., Medeiros, J., Mandels, M.: Biotech. Bioeng. 19, 1091 (1977)

    Google Scholar 

  45. Rautela, G. S., King, K. W.: Arch. Biochem. Biophys. 123, 589 (1968)

    PubMed  Google Scholar 

  46. Reese, E. T., Mandels, M.: In: Cellulose and Cellulose Derivatives, N. M. Bikales, L. Segal (Eds.), “Series on High Polymer”, Vol. 5, Part 5, p. 1079. New York: John Wiley 1971

    Google Scholar 

  47. Renkin, E. M.: J. Gen. Physiol. 38, 225 (1954)

    PubMed  Google Scholar 

  48. Ross, L. W., Updegraff, D. M.: Biotech. Bioeng. 13, 99 (1971)

    Article  Google Scholar 

  49. Simha, R.: J. Appl. Phys. 12, 570 (1941)

    Google Scholar 

  50. Stone, J. A., Scallan, A. M., Donefer, E., Ahlgren, E.: In: Adv. Chem. Series, G. J. Hajny, E. T. Reese (Eds.), 95, p. 219, American Chem. Soc, Washington D.C. 1969

    Google Scholar 

  51. Stuck, J. D.: Ph. D. Dissertation, Enzymatic Hydrolysis of Pure and Waste Cellulose, State University of New York at Buffalo, Buffalo 1973

    Google Scholar 

  52. Suga, K., van Dedem, G., Moo-Young, M.: Biotech. Bioeng. 17, 185 (1975)

    Google Scholar 

  53. Suga, K., van Dedem, G., Moo-Young, M.: Biotech. Bioeng. 17, 433 (1975)

    Google Scholar 

  54. Toda, S., Suzuki, H., Nisizawa, K.: J. Ferment. Technol. 46, 711 (1968)

    Google Scholar 

  55. Updegraff, D. M.: Biotech. Bioeng. 13, 77 (1971)

    Google Scholar 

  56. Van Dyke, Jr., B. H.: Ph. D. Dissertation, Enzymatic Hydrolysis of Cellulose. A Kinetic Study, M.I.T., Cambridge 1972

    Google Scholar 

  57. Walseth, C. S.: TAPPI, 35, 228 (1952)

    Google Scholar 

  58. Wheatley, M. A., Moo-Young, M.: Biotech. Bioeng. 19, 219 (1977)

    Google Scholar 

  59. Whitaker, D. R.: Arch. Biochem. Biophys. 43, 253 (1953)

    Article  PubMed  Google Scholar 

  60. Whitaker, D. R.: Arch. Biochem. Biophys. 53, 439 (1954)

    Google Scholar 

  61. Whitaker, D. R.: Canad. J. Biochem. Physiol. 43, 102 (1956)

    Google Scholar 

  62. Whitaker, D. R.: In: Marine Boring and Fouling Organisms, D. L. Ray (Ed.), p. 301. Seattle: University of Washington Press 1959

    Google Scholar 

  63. Wilke, C. R., Mitra, G.: In: Biotech. Bioeng. Symp. No. 5, C. R. Wilke (Ed.), p. 253. New York: Interscience 1975

    Google Scholar 

  64. Wilke, C. R., Yang, R. D.: In: Symposium on Enzymatic Hydrolysis of Cellulose, M. Bailey, T. M. Enari, M. Linko (Eds.), p. 485. Aulanko, Finland 1975

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag

About this paper

Cite this paper

Lee, YH., Fan, L.T., Fan, LS. (1980). Kinetics of hydrolysis of insoluble cellulose by cellulase. In: Advances in Biochemical Engineering, Volume 17. Advances in Biochemical Engineering, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-09955-7_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-09955-7_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09955-0

  • Online ISBN: 978-3-540-39160-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics