Skip to main content

The mathematical origins of general relativity and of unified field theories

  • Workshop: Strucktur und Entwicklung Physikalischer Theorien
  • Conference paper
  • First Online:
Einstein Symposion Berlin

Part of the book series: Lecture Notes in Physics ((LNP,volume 100))

Abstract

In this paper I discuss the heuristic role which mathematics plays in physical discovery: first through the surplus structure which mathematics injects into physical principles which are given a mathematical formulation; secondly, through the realist interpretation of certain mathematical entities which appear at first sight to be devoid of any physical meaning. I then try to account for this dual role of mathematics in terms of a single philosophical principle, namely Meyerson's principle of identity. I finally apply these considerations to the study of two important questions; the questions namely of the continuity between STR and GTR (STR = Special Theory of Relativity, GTR = General Theory of Relativity) and of the emergence both of General Relativity and of the Unified Field Theories of Weyl, Eddington and Schrödinger-Einstein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. Cf. “Geometrie and Erfahrung” in: Einstein, Mein Weltbild, p. 119.

    Google Scholar 

  2. Cf. Oskar Becker, Grundlagen der Mathematik, pp. 144–167.

    Google Scholar 

  3. For the role which mathematical surplus structure plays in physics, cf. M. L. G. Redhead, “Symmetry in Intertheory Relations”, in: Synthese 32 (1975).

    Google Scholar 

  4. Cf. Bernhard Riemann, Collected Works, (Dover) pp. 272–273.

    Google Scholar 

  5. As above, p. 286.

    Google Scholar 

  6. Cf. Mach, Mechanics, Introduction. Also: Erkenntnis and Irrtum, pp. 164–182.

    Google Scholar 

  7. H. Weyl, Raum Zeit Materie, § 40.

    Google Scholar 

  8. Eddington, The mathematical Theory of Relativity, § 97.

    Google Scholar 

  9. Schrödinger, Space-Time Structure, Chapter XII.

    Google Scholar 

  10. Duhem, Aim and Structure of Physical Theory, Part 2,.Chapter 1.

    Google Scholar 

  11. For the important role which philosophical realism plays in the logic of discovery, cf. Popper, “Three Views Concerning Human Knowledge” in: ‘Conjectures and Refutations’ (Section 3).

    Google Scholar 

  12. For the fruitfulness of these equivalent reformulations, cf. Feynman, The Character of Physical Law, p. 168.

    Google Scholar 

  13. E. Meyerson, Identité et Réalité, Chapter I. Also: De L'Explication das Les Sciences, Chapter V.

    Google Scholar 

  14. Cf. Popper, “The Aim of Science”, in: Objective Knowledge, p. 191.

    Google Scholar 

  15. Identité et Réalité, Chapter III.

    Google Scholar 

  16. Weyl, Philosophy of Mathematics and Natural Science, p. 5.

    Google Scholar 

  17. Meyerson, La Déduction Relativiste, Chapter XX.

    Google Scholar 

  18. Weyl, Philosophy of Mathematics and Natural Science, pp. 87–88.

    Google Scholar 

  19. Mach, The History and the Root of the Principle of the Conservation of Energy, Notes.

    Google Scholar 

  20. Eddington, The Mathematical Theory of Relativity, p. 120.

    Google Scholar 

  21. “Prinzipielles zur allgemeinen Relativitätstheorie”, Annalen der Physik, Band 55, 1918. Also see Appendix 1.

    Google Scholar 

  22. For this point I am indebted to Professor J. Stachel.

    Google Scholar 

  23. Cf. above, see I.1.

    Google Scholar 

  24. Mathematical Theory of Relativity, p. 212.

    Google Scholar 

  25. Mathematical Theory of Relativity, p. 213.

    Google Scholar 

  26. Mathematical Theory of Relativity, p. 206.

    Google Scholar 

  27. Schrödinger, Space-Time Structure, p. 112.

    Google Scholar 

  28. Cf. my "Why did Einstein's programme supersede Lorentz's?, Brit. J. Phil. Sci. 24 (1973) pp 95–123 and 223–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Nelkowski A. Hermann H. Poser R. Schrader R. Seiler

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag

About this paper

Cite this paper

Zahar, E.G. (1979). The mathematical origins of general relativity and of unified field theories. In: Nelkowski, H., Hermann, A., Poser, H., Schrader, R., Seiler, R. (eds) Einstein Symposion Berlin. Lecture Notes in Physics, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-09718-X_84

Download citation

  • DOI: https://doi.org/10.1007/3-540-09718-X_84

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09718-1

  • Online ISBN: 978-3-540-38512-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics