Skip to main content

The spectral transform NS a tool for solving nonlinear discrete evolution equations

  • Conference paper
  • First Online:
Nonlinear Problems in Theoretical Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 98))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Levy and F. Lessman. Finite Difference Equations, Macmillan, New York, 1961.

    Google Scholar 

  2. E. Pinney. Ordinary Difference-Differential Equations, Univ. of California Press, New York, 1953.

    Google Scholar 

  3. R. Bellman and K.L. Cooke. Differential-Difference Equations, Academic Press, New York, 1963.

    Google Scholar 

  4. G. Innis. Dynamical analysis in “Soft Science” studies; in defence of difference equations, in Lecture Notes in Biomathenatics 2 (S. Levin ed.), Springer Verlag, Berlin 1974, pp. 102–122.

    Google Scholar 

  5. E. Fermi, J.R. Pasta and S.M. Ulam. Studies of nonlinear problems, in Collected Papers of E. Fermi, Univ. of Chicago Press, Chicago, 1965, vol.II, pp.977–988.

    Google Scholar 

  6. N.J. Zabusky. A synergetic approach to problems of nonlinear dispersive waves propagation and interaction, in Proc. Symp. on Nonlinear Partial Differential Equations (W.F. Ames, ed.), Academic Press, New York, 1967, pp.223–258.

    Google Scholar 

  7. N.J. Zabusky and H.D. Kruskal. Interaction of “Solitons” in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15, 240–243 (1965).

    Google Scholar 

  8. M. Toda. Vibration of a chain with nonlinear interaction, J. Phys. Soc. Japan 22, 431–436 (1967).

    Google Scholar 

  9. M. Toda. Wave propagation in anharmonic lattice, J. Phys. Soc. Japan 23, 501–506 (1967).

    Google Scholar 

  10. M. Toda. Mechanics and statistical mechanics of nonlinear chains, in Proc. of the International Conference on Statistical Mechanics, Kyoto 1968, Suppl. J. Phys. Soc. Japan 26, 235–237 1969

    Google Scholar 

  11. M. Toda. Waves in nonlinear lattice, Suppl. Progr. Theor. Phys. 45, 174–200 (1970).

    Google Scholar 

  12. M. Toda and M. Wadati. A soliton and two solitons in an exponential lattice and related equations, J. Phys. Soc. Japan 34, 13–25 (1973).

    Google Scholar 

  13. R. Hirota. Exact N-soliton solution of a nonlinear lumped network equation, J. Phys. Soc. Japan 35, 236–283 (1973).

    Google Scholar 

  14. M. Hénon. Integrals of the Toda lattice, Phys. Rev. B9, 1921–1923 (1974)

    Google Scholar 

  15. H. Flaschka. The Toda lattice I, existance of integrals, Phys. Rev. B9, 1924–1925 (1974).

    Google Scholar 

  16. H. Flaschka. On the Toda lattice II-Inverse scattering solution, Prog. Theor. Phys. 51, 703–716 (1974).

    Google Scholar 

  17. M. Kac and P. van Moerbeke. On an explicit soluble systems of nonlinear differential equations related to certain Toda lattice, Advan. Math. 16, 160–169 (1975).

    Google Scholar 

  18. M. Kac and P. van Moerbeke. On some periodic Toda lattice, Proc. Nat. Acad. Sci. U.S.A. 72, 1627–1629 (1975).

    Google Scholar 

  19. M. Toda. Studies in a non-linear lattice, Phys. Reports 13C, 1–125 (1975).

    Google Scholar 

  20. E. Date and S. Tanaka. Analogue of the inverse scattering theory for the discrete Hill's equation and exact solutions for the periodic Toda lattice, Prog. Theor. Phys. 55, 457–465 (1976).

    Google Scholar 

  21. M. Toda. Development of the theory of a nonlinear lattice, Suppl. Progr. Theor. Phys. 59, 1–35 (1976).

    Google Scholar 

  22. R. Hirota and J. Satsuma. A variety of nonlinear network equations generated from the Bäcklund transformation for the Toda lattice, Suppl. Prog. Theor. Phys. 59, 64–100 (1976).

    Google Scholar 

  23. K. Sawada and T. Kotera. Toda lattice as an integrable system and the uniqueness of Toda's potential, Suppl. Prog. Theor. Phys. 59, 101–106 (1976).

    Google Scholar 

  24. M. Toda, R. Hirota and J. Satsuma. Chopping phenomena of a nonlinear system, Suppl. Prog. Theor. Phys. 59, 148–161 (1976).

    Google Scholar 

  25. H. Flaschka and D.W. McLaughlin. Canonically conjugate variables for the Korteweg-deVries equation and the Toda lattice with periodic boundary conditions, Prog. Theor. Phys. 55, 438–456 (1976).

    Google Scholar 

  26. B.A.Dubrovin, V.B. Matveev and S.P. Novikov. Nonlinear equations of Korteweg-de Dries type, finite-zone linear operators, and abelian varieties, Russian Math. Surveys 31, 59–146 (1976).

    Google Scholar 

  27. R. Hirota. Nonlinear partial difference equations II — Discrete Toda equation, J. Phys. Soc. Japan 43, 2074–2078 (1977).

    Google Scholar 

  28. R.K. Dodd. Generalized Bäcklund transformation for some nonlinear partial difference equations, J. Phys. A11, 81–91 (1978).

    Google Scholar 

  29. R. Hirota and K. Suzuki. Studies on lattice solitons by using electric networks, J. Phys. Soc. Japan 28, 1336–1337 (1970).

    Google Scholar 

  30. R. Hirota. Exact N-soliton solution of nonlinear lumped self-dual network equations, J. Phys. Soc. Japan 35, 289–294 (1973).

    Google Scholar 

  31. V.E. Zakharov, S.L. Musher and A.M. Rubenchik. Nonlinear stage of parametric wave excitation in a plasma, Sov. Phys. J.E.P.T. Lett. 19, 151–152 (1974).

    Google Scholar 

  32. E.C. Titchmarsh. Theory of Fourier integrals, Oxford Univ. Press Oxford 1937, pp.298–301.

    Google Scholar 

  33. E.C. Titchmarsh. Solutions of some functional equations, J. London Math. Soc. 14, 118–124 (1939).

    Google Scholar 

  34. F. Calogero. Spectral Transform and nonlinear evolution equations, on this same issue, pp. 29.

    Google Scholar 

  35. A. Degasperis. Spectral Transform and solvability of nonlinear evolution equations, on this same issue, pp. 35.

    Google Scholar 

  36. K.M. Case and M. Kac. A discrete version of the Inverse Scattering problem. J. Math. Phys. 14, 594–603 (1973).

    Google Scholar 

  37. K.M. Case. On discrete Inverse Scattering problem II, J. Math. Phys. 14, 916–920 (1973).

    Google Scholar 

  38. K.M. Case and S.C. Chiu. The discrete version of the Marchenko equations in the Inverse Scattering problem. J. Math. Phys. 14, 1643–1647 (1973).

    Article  Google Scholar 

  39. K.M. Case. The discrete Inverse Scattering problem in one dimension, J. Math. Phys. 15, 143–146 (1974).

    Google Scholar 

  40. K.M. Case. Fredholm determinants and multiple solitons, J. Math. Phys. 17, 1703–1706 (1976).

    Google Scholar 

  41. Here, and allways in the following, subscripts indicate partial differentiation: ut = ∂u/∂t, etc.

    Google Scholar 

  42. M.J. Ablowitz and J.F. Ladik. Nonlinear differential-difference equations, J. Math. Phys. 16, 598–603 (1975).

    Google Scholar 

  43. M.J. Ablowitz and J.F. Ladik. Nonlinear differential-difference equations and Fourier analysis, J. Math. Phys. 17, 1011–1018 (1976).

    Google Scholar 

  44. M.J. Ablowitz and J.F. Ladik. A nonlinear difference scheme and Inverse Scattering, Stud. Appl. Math. 55, 213–229 (1976).

    Google Scholar 

  45. M.J. Ablowitz. Nonlinear evolution equations-continuous and discrete, Siam Review 19, 663–684 (1977).

    Google Scholar 

  46. M.J. Ablowitz. Lectures on the Inverse Scattering transform, Stud. Appl. Math. 58, 17–94 (1978).

    Google Scholar 

  47. V. Zakharov and A.B. Shabat. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet. Phys. J.E.P.T. 34, 62–69 (1972).

    Google Scholar 

  48. S.C. Chiu and J.F. Ladik. Generating exactly soluble nonlinear discrete evolution equations by a generalized Wronskian technique, J. Math. Phys. 18, 690–700 (1977).

    Google Scholar 

  49. For another method of obtaining the nonlinear discrete evolution equations, see the works of ref. 8

    Google Scholar 

  50. M. Wadati. The exact solution of the Modified Korteweg-deVries equation, J.Phys. Soc. Japan 32, 1681 (1972).

    Google Scholar 

  51. M. Bruschi, D. Levi and 0. Ragnisco. Spectral Transform approach to a discrete version of the Modified Korteweg-de Vries equation with x-dependent coefficients, sent to the Il Nuovo Cimento for pubblication.

    Google Scholar 

  52. M. Wadati. Transformation theories for nonlinear discrete systems, Suppl. Prog. Theor. Phys. 59, 36–63 (1976).

    Google Scholar 

  53. A. Noguchi, H. Watanabe and K. Sakai. Shock waves and hole type solitons of nonlinear selfdual network equation, J. Phys. Soc. Japan 43, 1441–1446 (1977).

    Google Scholar 

  54. V. Volterra. Lecons sur la théorie mathématigue de la lutte pour la vie, Gautier-Villars, Paris 1931.

    Google Scholar 

  55. R. Hirota and J. Satsuma. N-solitons solutions of nonlinear network equations describing a Volterra system, J. Phys. Soc. Japan 40, 391–900 (1976).

    Google Scholar 

  56. S. Fujii, F. Kako and N. Mugibayashi. Inverse method applied to the solution of nonlinear network equations describing a Volterra system, J. Phys. Soc. Japan 42, 335–340 (1977).

    Google Scholar 

  57. J.F. Ladik and S.C. Chiu. Solution of nonlinear network equations by the Inverse Scattering method, J. Math. Phys. 18, 701–704 (1977).

    Google Scholar 

  58. M. Wadati and M. Watanabe. Conservation laws of a Volterra system and nonlinear self-dual network equations, Prog. Theor. Phys. 57, 808–811 (1977).

    Google Scholar 

  59. G.F. Carrier and C.E. Pearson. Partial differential equations, theory and technique, Academic Press, New York 1976.

    Google Scholar 

  60. D. Levi and O. Ragnisco. Extension of the Spectral Transform method for solving nonlinear differential-difference equations, Lett. Nuovo Cimento (1973), 22 691–696.

    Google Scholar 

  61. M. Bruschi, D. Levi and O. Ragnisco. Spectral Transform approach to a discrete version of the nonlinear Schrödinger equation with x-dependent coefficients, in preparation.

    Google Scholar 

  62. J.C. Fernandez and G. Reinisch. Collapse of a Volterra soliton into a weak monotone shock wave, Physica A (1978) in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

A. F. Rañada

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag

About this paper

Cite this paper

Levi, D. (1979). The spectral transform NS a tool for solving nonlinear discrete evolution equations. In: Rañada, A.F. (eds) Nonlinear Problems in Theoretical Physics. Lecture Notes in Physics, vol 98. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-09246-3_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-09246-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09246-9

  • Online ISBN: 978-3-540-35326-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics