Skip to main content

Three-Body Phenomenology for Elementary Particle Systems

  • Conference paper
Few Body Systems and Nuclear Forces II

Part of the book series: Lecture Notes in Physics ((LNP,volume 87))

  • 287 Accesses

Abstract

Today, and for the next several years, the few-body theorist who is willing to confront data directly, has a unique opportunity to make contributions of significance and broad interest in Elementary Particle Physics. The contributed works at this meeting, for the most part, have ignored such possibilities, and rather than review these papers (which speak clearly for themselves), I shall try to present, what I hope, are new horizons for many of you.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. J. Herndon, P. Söding, and R. J. Cashmore, Phys. Rev. D11, 3165 (1975).

    ADS  Google Scholar 

  2. See also B. H. Brandsen and R. G. Moorhouse, The Pion-Nucleon System (Princeton University Press, Princeton, New Jersey, 1973). These authors give a detailed list of earlier references.

    Google Scholar 

  3. R. Aaron and R. D. Amado, Phys. Rev. Lett. 31, 1157 (1973). The “minimal” equations which implement both unitarity and subenergy analyticity have been discussed by I.

    Article  ADS  Google Scholar 

  4. J. R. Aitchison, Phys. Rev. 137, B1070 (1965).

    Article  ADS  Google Scholar 

  5. R. Aaron and R. D. Amado, Phys. Rev. D13, 2581 (1976).

    ADS  Google Scholar 

  6. These results are byproducts of the πN elastic scattering calculation described in R. Aaron and R. D. Amado, Phys. Rev. Lett. 27, 1316 (1971). For more details of the calculation see.

    Article  ADS  Google Scholar 

  7. R. Aaron, Modern Three-Hadron Physics, edited by A. W. Thomas (Springer, Heidelberg, W. Germany, 1976), Chap. 5. An expanded discussion of the physics of Fig. 1 appears in the Appendix of.

    Google Scholar 

  8. R. Aaron et al., Phys. Rev. D16, 50 (1977).

    ADS  Google Scholar 

  9. D. J. Herndon et al., Phys. Rev. D11, 3183 (1975). Hereafter referred to as BSC.

    ADS  Google Scholar 

  10. R. Aaron, R. D. Amado and J. E. Young, Phys. Rev. 174, 2022 (1968).

    Article  ADS  Google Scholar 

  11. This work has been done in collaboration with R. S. Longacre at Northeastern University, and R. A. Arndt, D. C. Teplitz and V. L. Teplitz at Virginia Polytechnic Institute and State University.

    Google Scholar 

  12. Three-pion data: G. Ascoli et al., Phys. Rev. D7, 669 (1973).

    ADS  Google Scholar 

  13. Yu. M. Antipov et al., Nucl. Phys. B63, 153 (1973).

    Article  ADS  Google Scholar 

  14. K*K data: G. Otter et al., Nucl. Phys. B96, 365 (1975).

    ADS  Google Scholar 

  15. J. Penegr, et al., “Evidence for Resonance Behavior of A1 and A3 Mesons Coherently Produced on Nuclei,” paper submitted to the Budapest Conference, 1977.

    Google Scholar 

  16. C. Baltay, C. V. Cautis and M. Kalekar, Phys. Rev. Lett. 39, 591 (1977).

    Article  ADS  Google Scholar 

  17. M. J. Corden et al., Rutherford Laboratory Preprint No. RL-77-139/A.

    Google Scholar 

  18. Ph. Gavillet et al., Phys. Lett. 69B, 119 (1977) for K-mesons, and.

    Article  ADS  Google Scholar 

  19. A. Ferrer et al., Phys. Lett. 74B, 287 (1978) for π-mesons.

    Article  ADS  Google Scholar 

  20. SLAC-LBL Collaboration, Phys. Rev. Lett. 40, 1120 (1978)[τ → μυῡ and τ̄ → ῡ3π]. PLUTO Collaboration, DESY, H. Meyer, Meeting of the APS-DPF, Argonne 1977 [τ → eυῡ, τ̄ → ῡ3π].

    Article  Google Scholar 

  21. See, for example, H. J. Schnitzer, “Spin Structure in Meson Spectroscopy with an Effective Scalar Confinement of Quarks,” Brandeis Preprint (to be published in Phys. Rev. D).

    Google Scholar 

  22. L. Stodolsky, Phys. Rev. Lett. 18, 973 (1967).

    Article  ADS  Google Scholar 

  23. R. S. Longacre and R. Aaron, Phys. Rev. Lett. 38, 1509 (1977).

    Article  ADS  Google Scholar 

  24. R. Aaron, R. S. Longacre and J. E. Sacco, Northeastern University Preprint NUB #2340 (to be published in Annals of Physics, N.Y.).

    Google Scholar 

  25. J. B. Bronzan, Phys. Rev. 139, B751 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  26. R. D. Amado, Phys. Rev. 132, 485 (1963).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. This result is consistent with that of other authors. See for example, R. L. Schult and H. W. Wyld, Phys. Rev. D16, 62 (1977).

    ADS  Google Scholar 

  28. I. J. R. Aitchison and R. J. A. Golding, Phys. Lett. 59B, 228 (1975).

    Google Scholar 

  29. D. Morgan, Contribution to International Conference on High Energy Physics, Palermo, 1975.

    Google Scholar 

  30. M. G. Bowler, M. A. V. Game, I. J. R. Aitchison and J. B. Dainton, Nucl. Phys. B97, 227 (1975).

    Article  ADS  Google Scholar 

  31. J. L. Basdevant and E. L. Berger, Phys. Rev. D16, 657 (1977).

    ADS  Google Scholar 

  32. I. J. R. Aitchison and M. G. Bowler, University of Oxford Preprint #24/77.

    Google Scholar 

  33. R. Arnowitt, M. H. Friedman and P. Nath, Phys. Rev. 174, 2008 (1968).

    Article  ADS  Google Scholar 

  34. H. J. Schnitzer and S. Weinberg, Phys. Rev. 164, 1828 (1967).

    Article  ADS  Google Scholar 

  35. R. Aaron, H. Goldberg and R. S. Longacre, Northeastern University Preprint NUB #2350 (revised).

    Google Scholar 

  36. We interpret Soln E of Basdevant and Berger (Réf. 20) which contains two driving poles as being of this type, with the distant pole corresponding to a short range repulsion.

    Google Scholar 

  37. See Ref. 8. The conclusions of these authors disagree with ours. We believe that they are in error for two reasons: (1) They ignored the Deck mechanism altogether. (2) They used the 0 pir partial wave amplitude as a reference. As we have shown in Sec. I, this amplitude is small, varies rapidly over the Dalitz plot, and is poorly determined in partial wave analyses. Clearly, it is a poor choice for a reference amplitude!.

    Google Scholar 

  38. D. D. Brayshaw, SLAC-PUB-2094 (March, 1978).

    Google Scholar 

  39. H. J. Melosh, Phys. Rev. D9, 1095 (1974).

    ADS  Google Scholar 

  40. F. J. Gilman, M. Kugler and S. Meshkov, Phys. Rev. D9, 715 (1974).

    ADS  Google Scholar 

  41. D. Faiman and J. Rosner, Phys. Lett. 45B, 357 (1973).

    Google Scholar 

  42. For results of LBL-SLAC analysis see Ref. 4; the Saclay analysis is described by R. S. Longacre and J. Dolbeau, Nucl. Phys. B122, 493 (1977), and the Imperial College analysis by K. W. J. Parnham et al., submitted to the Topical Conference on Baryon Resonances, Oxford, July 1976. For a review and comparison of the LBL-SLAC, Saclay, and Imperial College analyses, see invited talk by K. W. J. Barnham presented at this conference.

    Article  ADS  Google Scholar 

  43. D. Faiman, Nucl. Phys. B109, 286 (1976). For a detailed comparison of the fitted amplitudes with theory, see R. S. Longacre and J. Dolbeau, Ref. 31.

    Article  ADS  Google Scholar 

  44. F. von Hippel and C. Quigg, Phys. Rev. D5, 624 (1972).

    ADS  Google Scholar 

  45. J. Blatt and V. E. Weisskopf, Theoretical Nuclear Physics (Wiley, New York, 1952), p. 361.

    MATH  Google Scholar 

  46. R. S. Longacre, Northeastern University Preprint NUB #2356.

    Google Scholar 

  47. J. Orear, Cornell University Preprint #CLNS384.

    Google Scholar 

  48. M. G. Olsson and L. Turner, Phys. Rev. Lett. 20, 1127 (1968).

    Article  ADS  Google Scholar 

  49. The spokesman for this experiment is G. A. Rebka.

    Google Scholar 

  50. R. Aaron and H. Goldberg (in preparation); see also, Ref. 24.

    Google Scholar 

  51. S. Weinberg, Phys. Rev. Lett. 18, 188 (1967).

    Article  ADS  Google Scholar 

  52. D. Faiman, Nucl. Phys. B115, 478 (1976).

    Article  ADS  Google Scholar 

  53. See Ref. 41 for theoretical situation and R. S. Longacre and J. Dolbeau, Ref. 31, for experimental status.

    Google Scholar 

  54. A. B. Wicklund, ANL-HEP-CP-76-56; Aachen-Berlin-Bonn-CERN Collaboration, Bonn-HE-76-21; Bonn-Hamburg-Munich (MPI) Collaboration, MPI-PAE/Exp.E1.64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aaron, R. (1978). Three-Body Phenomenology for Elementary Particle Systems. In: Zingl, H., Haftel, M., Zankel, H. (eds) Few Body Systems and Nuclear Forces II. Lecture Notes in Physics, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-09099-1_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-09099-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09099-1

  • Online ISBN: 978-3-540-35555-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics