Skip to main content

Statistical models of cell populations

  • Conference paper
  • First Online:
Advances in Biochemical Engineering, Volume 11

Part of the book series: Advances in Biochemical Engineering ((ABE,volume 11))

Abstract

Statistical models for the description of microbial population growth have been reviewed with emphasis on their features that make them useful for applications. Evidence is shown that the integrodifferential equations of population balance are solvable using approximate methods. Simulative techniques have been shown to be useful in dealing with growth situations for which the equations are not easily solved.

The statistical foundation of segregated models has been presented identifying situations, where the deterministic segregated models would be adequate. The mathematical framework required for dealing with small populations in which random behavior becomes important is developed in detail.

An age distribution model is presented, which accounts for the correlation of life spans of sister cells in a population. This model contains the machinery required to incorporate correlated behavior of sister cells in general. It is shown that the future of more realistic segregated models, which can describe growth situations more general than repetitive growth, lies in the development of models similar to the age distribution model mentioned above.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A:

Age of a cell randomly selected from the population

a:

Typical value of A

C:

Environmental concentration vector (m-dimensional)

c:

Typical point in environmental concentration space

Ċ:

Rate of consumption of environmental substances

Cs :

Substrate concentration

E:

Expectation

fr :

Product density of rth order

fC :

Probability density for C

fZ/A :

Probability density for Z conditional on a knowledge of A

fZ/S :

Probability density for Z conditional on a knowledge of S

f i1 :

Product density of order 1 for an “i-let”, defined in 4.1

Jv :

Janossy density or Master density

M:

Mass of cell selected at random from the population

\(\bar \dot M\) :

Average mass-specific growth rate

m:

Typical value of M

N:

Total number of cells per unit volume of culture

n:

Number density function

p:

Partitioning function for physiological state

Pv :

Probability distribution for N

\(\bar R\) :

Biochemical reaction rate vector

r:

Partitioning function for cell size

ri :

Number of “i-lets” per unit volume of culture

S:

Size of a cell selected at random from the population

\(\bar \bar S\) :

Average size-specific growth rate

s:

Typical value of S

t:

Time

V:

Variance

Z:

Physiological state vector (n-dimensional)

z:

Typical point in physiological state space

Ż:

Average growth rate of cell

ℭ:

Environmental concentration space

\(d\mathfrak{c}\) :

Infinitesimal volume in ℭ

\(\mathfrak{S}_s\) :

Hypersurface in physiological state space defined by Eq. (17)

\(d\mathfrak{f}\) :

Infinitesimal surface on \(\mathfrak{S}_s\)

\(\mathfrak{B}\) :

Physiological state space

\(d\mathfrak{v}\) :

Infinitesimal volume in \(\mathfrak{B}\)

β:

Stoichiometric matrix for biochemical constituents of the cell

γ:

Stoichiometric matrix for environmental substances

Γ:

Age-specific or size-specific transition probability

7 References

  1. Athreya, K. B., Ney, P. E.: Branching Processes. New York: Springer 1972

    Google Scholar 

  2. Tsuchiya, H. M., Fredrickson, A. G., Aris, R.: Advan. Chem. Eng. 6, 125 (1966)

    Google Scholar 

  3. Fredrickson, A. G., Ramkrishna, D., Tsuchiya, H. M.: Math. Biosci. 1, 327 (1967)

    Article  Google Scholar 

  4. Bharucha-Reid, A. T.: Elements of the Theory of Markov Processes and their Applications. New York: McGraw-Hill 1960

    Google Scholar 

  5. Aris, R.: Vectors, Tensors and the Basic Equations of Fluid Mechanics. New Jersey: Prentice-Hall 1962, pp. 85

    Google Scholar 

  6. Hulburt, H. M., Katz, S. L.: Chem. Eng. Sci. 19, 555 (1964)

    Article  Google Scholar 

  7. Foerster Von, H.: The Kinetics of Cellular Proliferation (F. Stohlman Ed.), pp. 382–407. New York: Grune & Stratton 1959

    Google Scholar 

  8. Perret, C. J.: J. Gen. Microbiol. 22, 589 (1960)

    Google Scholar 

  9. Bailey, J. E.: Structural Cellular Dynamics as an Aid to Improved Fermentation Processes. Proceedings of the Conference on Enzyme Technology and Renewable Resources, University of Virginia, Charlottesville, VA, May 19–21, 1976

    Google Scholar 

  10. Bailey, J. E., Fazel-Madjlessi, J., McQuitty, D. N., Lee, D., Oro, J. A.: Characterization of Bacterial Growth Using Flow Microfluorometry. Science 198, 1175 (1977)

    PubMed  Google Scholar 

  11. Bailey, J. E., Fazel-Madjlessi, J., McQuitty, D. N., Lee, L. Y., Oro, J. A.: Measurement of Structured Microbial Population Dynamics by Flow Microfluorometry, A. I. Ch. E. Jl. 24, 510 (1978)

    Google Scholar 

  12. Trucco, E.: Bull. Math. Biophys. 27, 285 (1965)

    PubMed  Google Scholar 

  13. Trucco, E.: Bull. Math. Biophys. 27, 449 (1965)

    PubMed  Google Scholar 

  14. Aris, R., Amundson, N. R.: Mathematical Methods in Chemical Engineering. New Jersey: Prentice Hall 1973

    Google Scholar 

  15. Powell, E. O.: J. Gen. Microbiol. 15, 492 (1956)

    PubMed  Google Scholar 

  16. Harris, T. E.: The Theory of Branching Processes. Berlin/Göttingen/Heidelberg: Springer 1963

    Google Scholar 

  17. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Vol. 1. New York: Interscience 1953

    Google Scholar 

  18. Eakman, J. M., Fredrickson, A. G., Tsuchiya, H. M.: Chem. Eng. Prog. Symp. Series, No. 69. 62, 37 (1966)

    Google Scholar 

  19. Bertalanffy, L. von: Human Biol. 10, 280 (1938)

    Google Scholar 

  20. Bertalanffy, L. von: Theoretische Biologie. Berlin-Zehlendorf: Verlag von Gebrüder Borntraeger 1942

    Google Scholar 

  21. Subramanian, G., Ramkrishna, D.: Math. Biosci. 10, 1 (1971)

    Article  Google Scholar 

  22. Hulburt, H. M., Katz, S. L.: Chem. Eng. Sci. 19, 555 (1964)

    Article  Google Scholar 

  23. Ramkrishna, D.: Chem. Eng. Sci. 26, 1134 (1971)

    Article  Google Scholar 

  24. Finlayson, B.: The Method of Weighted Residuals. New York: Academic Press 1972

    Google Scholar 

  25. Subramanian, G., Ramkrishna, D., Fredrickson, A. G., Tsuchiya, H. M.: Bull. Math. Biophys. 32, 521 (1970)

    PubMed  Google Scholar 

  26. Hulburt, H., Akiyama, X: Ind. Eng. Chem. Fund. 8, 319 (1969)

    Article  Google Scholar 

  27. Ramkrishna, D.: Chem. Eng. Sci. 28, 1362 (1973)

    Article  Google Scholar 

  28. Singh, P. N., Ramkrishna, D.: Computers and Chemical Eng. 1, 23 (1977)

    Article  Google Scholar 

  29. Singh, P. N., Ramkrishna, D.: J. Colloid Interface Sci. 53, 214 (1975)

    Article  Google Scholar 

  30. Kendall, D. G.: J. Ray. Stat. Soc, Ser. B 12, 116 (1950)

    Google Scholar 

  31. Moshman, J.: Random Number Generation in Mathematical Models for Digital Computers. A. Ralston, H. S. Wilf (Eds.), Vol. II, pp. 249–284. New York: Wiley 1967

    Google Scholar 

  32. Newman, T. G., Odell, P. L.: Generation of Random Variates. Grissom's Statistical Monographs. L. N. Stewart (Ed.). New York: Hafner 1971

    Google Scholar 

  33. Shah, B. H., Borwanker, J. D., Ramkrishna, D.: Math. Biosci. 31, 1 (1976)

    Article  Google Scholar 

  34. Koch, A. L., Schaechter, M.: J. Gen. Microbiol. 29, 435 (1962)

    PubMed  Google Scholar 

  35. Eisen, M., Schiller, J.: J. Theor. Biol. 66, 799 (1977)

    Article  PubMed  Google Scholar 

  36. Rahn, O.: J. Gen. Physiol. 15, 257 (1932)

    Article  Google Scholar 

  37. Ward, H. M.: Proc. Royal Soc. 58, 265 (1895)

    Google Scholar 

  38. Bayne-Jones, S., Adolph, E. F.: J. Cell Comp. Physiol. 1, 389 (1932)

    Article  Google Scholar 

  39. Collins, J. F., Richmond, M. H.: J. Gen. Microbiol. 28, 15 (1962)

    PubMed  Google Scholar 

  40. Ramkrishna, D., Fredrickson, A. G., Tsuchiya, H. M.: Bull. Math. Biophys. 30, 319 (1968)

    Google Scholar 

  41. Harvey, R. J., Marr, A. G., Painter, P. R.: J. Bacteriol. 93, 605 (1967)

    PubMed  Google Scholar 

  42. Collins, J. F.: J. Gen. Microbiol. 34, 363 (1964)

    PubMed  Google Scholar 

  43. Schaechter, M., Williamson, J. P., Hood, J. R. (Jr.), Koch, A. L.: J. Gen. Microbiol. 29, 421 (1962)

    PubMed  Google Scholar 

  44. Powell, E. O.: J. Gen. Microbiol. 37, 231 (1964)

    PubMed  Google Scholar 

  45. Koch, A. L.,: J. Gen. Microbiol. 43, 1 (1966)

    PubMed  Google Scholar 

  46. Painter, P. R., Marr, A. G.: J. Gen. Microbiol. 48, 155 (1967)

    Google Scholar 

  47. Powell, E. O.: J. Gen. Microbiol. 58, 141 (1969)

    PubMed  Google Scholar 

  48. Srinivasan, S. K.: Stochastic Theory and Cascade Processes. New York: Elsevier 1969

    Google Scholar 

  49. Ramkrishna, D., Borwanker, J. D.: Chem. Eng. Sci. 28, 1423 (1973)

    Article  Google Scholar 

  50. Ramkrishna, D., Borwanker, J. D.: Chem. Eng. Sci. 29, 1711 (1974)

    Article  Google Scholar 

  51. Ramkrishna, D.: Statistical Foundation of Segregated Models of Cell Populations. Paper No. 436 presented at the 70th Annual Meeting of the A. I. Ch. E., New York, November 1977

    Google Scholar 

  52. Janossy, L.: Proc. Royal Soc. Acad. Ser. A 53, 181 (1950)

    Google Scholar 

  53. Ramakrishnan, A.: Probability and Stochastic Processes. Handbuch der Physik. S. Füigge (Ed.), Vol. 3, p. 524. Berlin: Springer 1959

    Google Scholar 

  54. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.: M. Abramowitz, J. A. Stegun (Eds.) N. B. S. Appl. Math. Series 55,1964

    Google Scholar 

  55. Taylor, A. E.: Advanced Calculus, pp. 227–228. Boston: Ginn & Co. 1955

    Google Scholar 

  56. Powell, E. O.: J. Gen. Microbiol. 18, 382 (1958)

    PubMed  Google Scholar 

  57. Kubitschek, H. E.: Exp. Call Res. 26, 439 (1962)

    Article  Google Scholar 

  58. Crump, K. S., Mode, C. J.: J. Appl. Prob. 6, 205 (1969)

    Google Scholar 

  59. Mode, C. J.: Multitype Branching Processes, New York: Elsevier 1971

    Google Scholar 

  60. Aiba, S., Endo, I.: A. I. Ch. E. Jl. 17, 608 (1971)

    Google Scholar 

  61. Kothari, I. R., Martin, G. C, Reilly, R. J., Eakman, J. M.: Biotechn. & Bioeng. 14, 915 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag

About this paper

Cite this paper

Ramkrishna, D. (1979). Statistical models of cell populations. In: Advances in Biochemical Engineering, Volume 11. Advances in Biochemical Engineering, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-08990-X_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-08990-X_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08990-2

  • Online ISBN: 978-3-540-35678-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics