Skip to main content

Optical measurement of membrane potential

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 83

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 83))

Abstract

Optical measurement of membrane potential is a new tool for physiologists and has already found many applications. However, the number of possible pitfalls is alarming, particularly in situations where comparison with electrode measurements is impossible. Exhaustive and elaborate controls are clearly necessary; and yet they never provide complete assurance that an optical signal represents a change in membrane potential. In our opinion, the use of redistribution signals, which are slower, and thus more likely to represent to secondary effects of changes in membrane potential, and require permeant dyes with access to the internal millieu, may be more hazardous than the use of either fast or intrinsic signals. However, the larger size of the redistribution signals has endowed them with obvious appeal. If more sensitive fast signals can be found, the use of this kind of signal would be facilitated.

Even though optical methods for measuring membrane potential were introduced relatively recently, their uses have multiplied rapidly and will doubtless continue to proliferate. It seems likely that, in several instances, optical techniques will prove to be quite powerful and, used with caution, should provide information unobtainable by other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Åkerman, K.E.O., Saris, N.-E.L.: Stacking of safranine in liposomes during valinomycin-induced efflux of potassium ions. Biochim. Biophys. Acta 426, 624–629 (1976)

    Google Scholar 

  • Åkerman, K.E.O., Wikström, M.K.F.: Safranine as a probe of the mitochondrial membrane potential. FEBS Lett. 68, 191–197 (1976)

    PubMed  Google Scholar 

  • Arvanitaki, A., Chalazonitis, N.: Excitatory and inhibitory processes initiated by light and infra-red radiations in single identifiable nerve cells (giant ganglion cells of Aplysia). In: Nervous Inhibition. E. Florey (ed.). New York: Pergamon Press 1961

    Google Scholar 

  • Ashkenazi, I.E., Hartman, H., Strulovitz, B., Dar, O.: Activity rhythms of enzymes in human red blood cell suspensions. J. Interdiscipl. Cycle Res. 6, 291–301 (1975)

    Google Scholar 

  • Azzi, A.: Redistribution of the electrical charge of the mitochondrial membrane during energy conservation. Biochem. Biophys. Res. Commun. 37, 254–260 (1969)

    PubMed  Google Scholar 

  • Azzi, A.: The application of fluorescent probes in membrane studies. Q. Rev. Biophys. 8, 237–316 (1975)

    Google Scholar 

  • Azzi, A., Chance, B., Radda, G.K., Lee, C.P.: A fluorescence probe of energy-dependent structure changes in fragmented membranes. Proc. Natl. Acad. Sci. USA 62, 612–619 (1969)

    Google Scholar 

  • Azzi, A., Gherardini, P., Santato, M.: Fluorochrome interaction with the mitochondrial membrane. The effect of energy conservation. J. Biol. Chem. 246, 2035–2042 (1971)

    Google Scholar 

  • Azzi, A., Santato, M.: Energy dependent interaction of oligomycin and dicyclohexyl-carbodiimide with the mitochondrial membrane. FEBS Lett. 7, 135–138 (1970)

    Google Scholar 

  • Bakeeva, L.E., Grinius, L.L., Jasaitis, A.A., Kuliene, V.V., Levitzky, D.O., Liberman, E.A., Severina, I.I., Skulachev, V.P.: Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria. Biochim. Biophys. Acta 216, 13–21 (1970)

    PubMed  Google Scholar 

  • Baker, P.F., Rink, T.J.: Catecholamine release from bovine adrenal medulla in response to maintained depolarization. J. Physiol. 253, 593–620 (1975)

    Google Scholar 

  • Barry, W.H., Carnay, L.D.: Changes in light scattered by striated muscle during excitation-contraction coupling. Am. J. Physiol. 217, 1425–1430 (1969)

    Google Scholar 

  • Baylor, S.M., Oetliker, H.: Birefringence experiments on isolated skeletal muscle fibres suggest a possible signal from the sarcoplasmic reticulum. Nature 253, 97–101 (1975)

    Google Scholar 

  • Baylor, S.M., Oetliker, H.: A large birefringence signal preceding contraction in single twitch fibres of the frog. J. Physiol. 264, 141–162 (1977a)

    Google Scholar 

  • Baylor, S.M., Oetliker, H.: The optical properties of birefringence signals from single muscle fibres. J. Physiol. 264, 163–198 (1977b)

    Google Scholar 

  • Baylor, S.M., Oetliker, H.: Birefringence signals from surface and T-system membranes of frog single muscle fibres. J. Physiol. 264, 199–213 (1977c)

    Google Scholar 

  • Bezanilla, F., Horowicz, P.: Fluorescence intensity changes associated with contractile activation in frog muscle stained with Nile blue A. J. Physiol. 246, 709–735 (1975)

    Google Scholar 

  • Blaurock, A.E., Stoeckenius, W.: Structure of the purple membrane. Nature (New Biol.) 233, 152–155 (1971)

    PubMed  Google Scholar 

  • Blaustein, M.P., Goldring, J.M.: Membrane potentials in pinched-off presynaptic nerve terminals monitored with a fluorescent probe: Evidence that synaptosomes have potassium diffusion potentials. J. Physiol. 247, 589–615 (1975)

    Google Scholar 

  • Bogomolni, R., Stoeckenius, W.: Bacteriorhodopsin: photosignal transduction and photoenergy transduction in different biological systems. J. Supramol. Struct. 2, 775–780 (1974)

    Google Scholar 

  • Braddick, H.J.J.: Photoelectric photometry. Rep. Prog. Physics 23, 154–175 (1960)

    Google Scholar 

  • Bramhall, J.S., Morgan, J.I., Perris, A.D., Britten, A.Z.: The use of a fluorescent probe to monitor alterations in trans-membrane potential in single cell suspensions. Biochem. Biophys. Res. Commun. 72, 654–662 (1976)

    Google Scholar 

  • Brewer, G.J.: The state of energization of the membrane of Escherichia coli as affected by physiological conditions and colicin K. Biochemistry 15, 1387–1392 (1976)

    Google Scholar 

  • Brocklehurst, J.R., Freedman, R.B., Hancock, D.J., Radda, G.K.: Membrane studies with polarity-dependent and excimer-forming fluorescent probes. Biochem. J. 116, 721–731 (1970)

    PubMed  Google Scholar 

  • Brown, J.E., Cohen, L.B., De Weer, P., Pinto, L.H., Ross, W.N., Salzberg, B.M.: Rapid changes of intracellular free calcium concentration; detection by metallochromic indicator dyes in squid giant axon. Biophys. J. 15, 1155–1160 (1975)

    Google Scholar 

  • Callahan, T.J., Hoffman, J.F.: Membrane potentials in human red blood cells due to proton gradients. Biophys. J. 16, 169a (1976)

    Google Scholar 

  • Carbone, E., Conti, F., Fioravanti, R.: Fluorescence polarization studies of squid giant axons stained with N-methylanilinonaphthalenesulfonates. Biophys. Struct. Mech. 1, 221–237 (1975)

    Google Scholar 

  • Carbone, E., Malerba, F., Poli, M.: Orientation and rotational freedom of fluorescence probes in lecithin bilayers. Biophys. Struct. Mech. 2, 251–267 (1976)

    Google Scholar 

  • Carnay, L.D., Barry, W.H.: Turbidity, birefringence, and fluorescence changes in skeletal muscle coincident with the action potential. Science 165, 608–609 (1969)

    Google Scholar 

  • Chance, B., Baltscheffsky, M., Vanderkooi, J., Cheng, W.: Localized and delocalized potentials in biological membranes. In: Perspectives in Membrane Biology. Estrada, S., Gitter, C. (eds.). New York: Academic Press 1974, pp. 329–369

    Google Scholar 

  • Chance, B., Lee, C.P.: Comparison of fluorescence probe and light-scattering readout of structural states of mitochondrial membrane fragments. FEBS Lett. 4, 181–184 (1969)

    Google Scholar 

  • Chance, B., Mayevsky, A., Smith, J.: Localized and delocalized potentials in the rat brain cortex. Neurosci. Abstr. 2/I, 133 (1976)

    Google Scholar 

  • Chance, B., Pring, M., Azzi, A., Lee, C.P., Mela, L.: Kinetics of membrane transitions. Biophys. J. 9, 90a (1969)

    Google Scholar 

  • Chance, B., Williams, G.R.: Respiratory enzymes in oxidative phosphorylation. III. The steady state. J. Biol. Chem. 217, 409–427 (1955)

    PubMed  Google Scholar 

  • Cohen, L.B.: Changes in neuron structure during action potential propagation and synaptic transmission. Physiol. Rev. 53, 373–418 (1973)

    PubMed  Google Scholar 

  • Cohen, L.B., Hille, B., Keynes, R.D.: Changes in axon birefringence during the action potential. J. Physiol. 211, 495–515 (1970)

    PubMed  Google Scholar 

  • Cohen, L.B., Hille, B., Keynes, R.D., Landowne, D., Rojas, E.: Analysis of the potential-dependent changes in optical retardation in the squid giant axon. J. Physiol. 218, 205–237 (1971)

    Google Scholar 

  • Cohen, L.B., Hille, B., Keynes, R.D.: Light scattering and birefringence changes during nerve activity. Nature 218, 438–441 (1968)

    PubMed  Google Scholar 

  • Cohen, L.B., Keynes, R.D., Hille, B.: Light scattering and birefringence changes during activity in the electric organ of Electrophorus electricus, J. Physiol. 203, 489–509 (1969)

    Google Scholar 

  • Cohen, L.B., Keynes, R.D., Landowne, D.: Changes in light scattering that accompany the action potential in squid giant axons: potential-dependent components. J. Physiol. 224, 701–725 (1972)

    Google Scholar 

  • Cohen, L.B., Landowne, D., Shrivastav, B.B., Ritchie, J.M.: Changes in fluorescence of squid axons during activity. Biol. Bull, Mar. Biol. Lab. Woods Hole 139, 418–419 (1970)

    Google Scholar 

  • Cohen, L.B., Salzberg, B.M., Davila, H.V., Ross, W.N., Landowne, D., Waggoner, A.S., Wang, C.H.: Changes in axon fluorescence during activity: molecular probes of membrane potential. J. Memb. Biol. 19, 1–36 (1974)

    Google Scholar 

  • Conti, F.: Fluorescent probes in nerve membranes. Ann. Rev. Biophys. Bioeng. 4, 287–310 (1975)

    Google Scholar 

  • Conti, F., Fioravanti, R., Malerba, F., Wanke, E.: A comparative analysis of extrinsic fluorescence in nerve membranes and lipid bilayers. Biophys. Struct. Mech. 1, 27–45 (1974)

    Google Scholar 

  • Conti, F., Tasaki, I.: Changes in extrinsic fluorescence in squid axons during voltage-clamp. Science 169, 1322–1324 (1970)

    PubMed  Google Scholar 

  • Conti, F., Tasaki, I., Wanke, E.: Fluorescence signals in ANS-stained squid axons during voltage clamp. Biophys. 8, 58–70 (1971)

    Google Scholar 

  • Costantin, L.L.: The role of sodium current in the radial spread of contraction in frog muscle fibres. J. Gen. Physiol. 55, 703–715 (1970)

    Google Scholar 

  • Davila, H.V., Cohen, L.B., Salzberg, B.M., Shrivastav, B.B.: Changes in ANS and TNS fluorescence in giant axons from Loligo. J. Memb. Biol. 15, 29–46 (1974)

    Google Scholar 

  • Davila, H.V., Cohen, L.B., Waggoner, A.S.: Changes in axon fluorescence during activity. Biophys. J. 12, 124a (1972)

    Google Scholar 

  • Davila, H.V., Salzberg, B.M., Cohen, L.B., Waggoner, A.S.: A large change in axon fluorescence that provides a promising method for measuring membrane potential. Nature (New Biol.) 241, 159–160 (1973)

    Google Scholar 

  • Doughty, M.J., Dodd, G.H.: Fluorometric determination of the resting potential changes associated with the chemotactic response in Paramecium. Biochim. Biophys. Acta 451, 592–603 (1976)

    Google Scholar 

  • Douglas, W.W., Kanno, T., Sampson, S.R.: Influence of the ionic environment on the membrane potential of adrenal chromaffin cells and on the depolarizing effect of acetylcholine. J. Physiol. 191, 107–121 (1967)

    Google Scholar 

  • Drabkin, D.L., Singer, R.B.: Spectrophotometric studies. VI. A study of the absorption spectra of non-hemolyzed erythrocytes and of scattering of light by suspensions of particles, with a note upon the spectrophotometric determination of pH within the erythrocyte. J. Biol. Chem. 129, 739–757 (1939)

    Google Scholar 

  • Dragsten, P.R., Webb, W.W.: Mechanism of membrane potential sensitivity of mero-cyanine 540. Biophys. J. 17, 215a (1977)

    Google Scholar 

  • Ebashi, S., Endo, M., Ohtsuki, I.: Control of muscle contraction. Q. Rev. Biophys. 2, 351–384 (1969)

    PubMed  Google Scholar 

  • Eisenberg, R.S., Howell, J.N., Vaughan, P.C.: The maintenance of resting potentials in glycerol-treated muscle fibres. J. Physiol. 215, 95–102 (1971)

    Google Scholar 

  • Emrich, H.M., Junge, W., Witt, H.T.: Further evidence for an optical response of chloroplast bulk pigments to a light induced electric field in photosynthesis. Z. Natur-forsch. 24b, 1144–1146 (1969)

    Google Scholar 

  • Ferguson, S.J., Lloyd, W.J., Radda, G.K.: On the nature of the energized state of submitochondrial particles; investigations with N-aryl napthalene sulfonate probes. Biochim. Biophys. Acta 423, 174–188 (1976)

    Google Scholar 

  • Fortes, P.A.G., Hoffman, J.F.: Interaction of fluorescent probes with anion permeability pathways of human red cells. J. Memb. Biol. 16, 79–100 (1974)

    Google Scholar 

  • Fowler, C.F., Kok, B.: Direct observation of a light-induced electric field in chloroplasts. Biochim. Biophys. Acta 357, 308–318 (1974)

    Google Scholar 

  • Franzini-Armstrong, C.: Studies of the triad. I. Structure of the junction in frog twitch fibres. J. Cell Biol. 47, 488–499 (1970)

    Google Scholar 

  • Freedman, J.C., Hoffman, J.F.: Donnan equilibria and membrane potentials in human red blood cells: A calibration of the fluorescent probe, diS-C3(5). Biophys. J. 17, 151a (1977)

    Google Scholar 

  • Fromherz, P.: A new method for investigation of lipid assemblies with a lipoid pH indicator in monomolecular films. Biochim. Biophys. Acta 323, 326–334 (1973)

    Google Scholar 

  • Fromherz, P., Masters, B.: Interfacial pH at electrically charged lipid monolayers investigated by the lipoid pH-indicator method. Biochim. Biophys. Acta 356, 270–275 (1974)

    Google Scholar 

  • Goldring, J.M., Blaustein, M.P.: Synaptosome membrane potential changes monitored with a fluorescent probe. Society for Neuroscience Sample Expanded Abstracts. Los Angeles: Brain Information Service 1973, pp. 14–15

    Google Scholar 

  • Greville, G.D.: A scrutiny of Mitchell's chemiosmotic hypothesis of respiratory chain and photosynthetic phosphorylation. Curr. Top. Bioenerg. 3, 1–78 (1969)

    Google Scholar 

  • Grinius, L.L., Jasaitis, A.A., Kadziauskas, Yu.P., Liberman, E.A., Skulachev, V.P., Topali, V.P., Tsofina, L.M., Vladimirova, M.A.: Conversion of biomembrane produced energy into electrical form. Biochim. Biophys. Acta 216, 1–12 (1970)

    PubMed  Google Scholar 

  • Grinvald, A., Cohen, L.B.: Optical monitoring of activity in barnacle neurons in response to light stimulation of the median photoreceptors. Neurosci. Abstr. 3, 178 (1977)

    Google Scholar 

  • Grinvald, A., Salzberg, B.M., Cohen, L.B.: Simultaneous recording from several neurons in an invertebrate central nervous system. Nature 268, 140–142 (1977)

    Google Scholar 

  • Hartman, H., Ashkenazi, I., Epel, B.L.: Circadian changes in membrane properties of human red blood cells in vitro, as measured by a membrane probe. FEBS Lett. 67, 161–163 (1976)

    Google Scholar 

  • Haynes, D.H.: 1-Anilino-8-Naphthalenesulfonate: A fluorescent indicator of ion binding and electrostatic potential on the membrane surface. J. Memb. Biol. 17, 341–366 (1974)

    Google Scholar 

  • Haynes, D.H., Simkowitz, P.: 1-Anilino-8-naphthalenesulfonate: a fluorescent probe of ion and ionophore transport kinetics and transmembrane asymmetry. J. Memb. Biol. 33, 63–108 (1977)

    Google Scholar 

  • Hill, D.K.: The effect of stimulation on the opacity of a crustacean nerve trunk and its relation to fibre diameter. J. Physiol. 111, 283–303 (1950)

    Google Scholar 

  • Hill, D.K.: The effect of stimulation on the diffraction of light by striated muscle. J. Physiol. 119, 501–512 (1953)

    Google Scholar 

  • Hladky, S.B., Rink, T.J.: Potential difference and the distribution of ions across the human red blood cell membrane: A study of the mechanism by which the fluorescent cation diS-C3(5) reports the membrane potential. J. Physiol. 263, 287–319 (1976a)

    Google Scholar 

  • Hladky, S.B., Rink, T.J.: pH changes in human erythrocytes reported by 3,3′ dipropyl-thiadicarbocyanine, diS-C3(5). J. Physiol. 263, 213p–214p (1976b)

    Google Scholar 

  • Hodgkin, A.L., Horowicz, P.: Potassium contracturesin single muscle fibres. J. Physiol. 153, 386–403 (1960)

    PubMed  Google Scholar 

  • Hodgkin, A.L., Huxley, A.F., Katz, B.: Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116, 424–448 (1952)

    PubMed  Google Scholar 

  • Hoffman, J.F., Laris, P.C.: Determination of membrane potentials in human and Amphiuma red blood cells by means of a fluorescent probe. J. Physiol. 239, 519–552 (1974)

    PubMed  Google Scholar 

  • Hoffman, J.F., Lassen, U.V.: Plasma membrane potential in Amphiuma red cells. Abst. XXV Int. Congr. Physiol. Sci. Munich, 1971

    Google Scholar 

  • Home, W.C., Whitin, J.C., Simons, E.R.: Platelet membrane potential changes in response to thrombin stimulation of aggregation. Blood 51, 741–749 (1978)

    Google Scholar 

  • Illanes, A., von Muralt, A.: Fluorescence probe signals from excited heart muscle. Experientia 31, 711 (1975)

    Google Scholar 

  • Jackson, J.B., Crofts, A.R.: The high energy state in chromatophores from Rhodo-pseudomonas spheroides. FEBS Lett. 4, 185–189 (1969)

    PubMed  Google Scholar 

  • Jackson, J.B., Crofts, A.R.: The kinetics of light induced carotenoid changes in Rhodo-pseudomonas spheroides and their relation to electrical field generation across the chromatophore membrane. Eur. J. Biochem. 18, 120–130 (1971)

    PubMed  Google Scholar 

  • Jasaitis, A.A., Kuliene, V.V., Skulachev, V.P.: Anilinonaphthalensulfonate fluorescence changes induced by non-enzymatic generation of membrane potential in mitochondria and submitochondrial particles. Biochim. Biophys. Acta 234, 177–181 (1971)

    PubMed  Google Scholar 

  • Jöbsis, F.F., O'Connor, M.J.: Calcium release and reabsorption in the sartorius muscle of the toad. Biochem. Biophys. Res. Commun. 25, 246–252 (1966)

    Google Scholar 

  • Johnstone, B.M.: Microelectrode penetration of ascites tumour cells. Nature 183, 411 (1959)

    Google Scholar 

  • Junge, W., Witt, H.T.: On the ion transport system of photosynthesis-investigations on a molecular level. Z. Naturforsch. 23b, 244–254 (1968)

    Google Scholar 

  • Kamino, K., Ogawa, M., Uyesaka, N., Inouye, A.: Membrane potential changes in isolated synaptic membrane ghosts monitores with merocyanine-540. Jap. J. Physiol. (1978) (in press)

    Google Scholar 

  • Kaplan, J.H., Passow, H.: Effects of phlorizin on net chloride movements across the valinomycin-treated erythrocyte membrane. J. Memb. Biol. 19, 179–194 (1974)

    Google Scholar 

  • Kashket, E.R., Wilson, T.H.: Protonmotive force in fermenting Streptococcus lactis 7962 in relation to sugar accumulation. Biochem. Biophys, Res. Commun. 59, 879–886 (1974)

    Google Scholar 

  • Kinnally, K.W., Tedeschi, H.: Phosphorylation without protonmotive force. FEBS Lett. 62, 41–46 (1976a)

    Google Scholar 

  • Kinnally, K.W., Tedeschi, H.: Phosphorylation without protonmotive force. Biophys. J. 16, 18a (1976b)

    Google Scholar 

  • Kinnally, K.W., Tedeschi, H.: Electrofluorimetric estimates of membrane potential in metabolizing mitochondria. Biophys. J. 17, 33a (1977)

    Google Scholar 

  • Knauf, P.A., Fuhrmann, G.F., Rothstein, S., Rothstein, A.: The relationship between anion exchange and net anion flow across the human red blood cell membrane. J. Gen. Physiol. 69, 363–386 (1977)

    Google Scholar 

  • Kovacs, L., Schneider, M.F.: Increased optical transparency associated with excitation-contraction coupling in voltage-clamped cut skeletal muscle fibres. Nature 265, 556–560 (1977)

    Google Scholar 

  • Krasne, S.: Cyanine dye-induced electrical and fluorescence effects in neutral and negative bilayer membranes. Biophys. J. 17, 214a (1977)

    Google Scholar 

  • Landowne, D.: Changes in fluorescence of skeletal muscle stained with merocyanine associated with excitation-contraction coupling. J. Gen. Physiol. 64, 5a (1974)

    Google Scholar 

  • Laris, P.C., Bahr, D.P., Chaffee, R.R.J.: Membrane potential in mitochondrial preparations as measured by means of cyanine dye. Biochim. Biophys. Acta 376, 415–425 (1975)

    PubMed  Google Scholar 

  • Laris, P.C., Pershadsingh, H.A.: Estimations of membrane potentials in Streptococcus faecalis by means of a fluorescent probe. Biochem. Biophys. Res. Commun. 57, 620–626 (1974)

    Google Scholar 

  • Laris, P.C., Pershadsingh, H.A., Johnstone, R.M.: Monitoring membrane potentials in Ehrlich ascites tumor cells by means of a fluorescent dye. Biochim. Biophys. Acta 436, 475–488 (1976)

    PubMed  Google Scholar 

  • Lassen, U.V.: Membrane potential and membrane resistance in red cells. In: Oxygen affinity of hemoglobin and red cell acid base status. Roth, M., Astrup, P. (eds.). New York: Academic Press 1972, pp. 291–304

    Google Scholar 

  • Lassen, U.V., Nielsen, A.-M.T., Pape, L., Simonsen, L.O.: The membrane potential of Ehrlich ascites tumor cells. Microelectrode measurements and their critical evaluation. J. Memb. Biol. 6, 269–288 (1971)

    Google Scholar 

  • Lee, C.-P., Ernster, L.: The energy-linked nicotinamide nucleotide transhydrogenase reaction: its characteristics and its use as a tool for the study of oxidative phosphorylation. In: Regulation of Metabolic Processes in Mitochondria. Tager, J.M., Papa, S., Quagliariello, E., Slater, E.C. (eds.). Amsterdam: Elsevier 1966, pp. 218–234

    Google Scholar 

  • Levi, L.: Applied Optics: A Guide to Optical System Design. New York: John Wiley 1968, pp. 152–155

    Google Scholar 

  • Levin, S.V.: Structural changes of cell membranes. Leningrad: Izdatel'stuo “Nauka”, Leningrad Branch 1976

    Google Scholar 

  • Levin, S.V., Rozenthal, D.L., Komissarchik, Ya.Yu.: Structural changes in the axon membrane on excitation. Biofizika 13, 180–182 (1968)

    Google Scholar 

  • Mitchell, P.: Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144–148 (1961)

    PubMed  Google Scholar 

  • Mitchell, P.: Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation. Bodmin: Glynn Research 1966

    Google Scholar 

  • Mobley, B.A., Eisenberg, B.R.: Sizes of components in frog skeletal muscle measured by methods of stereology. J. Gen. Physiol. 66, 31–45 (1975)

    Google Scholar 

  • Montal, M., Chance, B., Lee, C.P., Azzi, A.: Effect of ion-transporting antibiotics on the energy-linked reactions of submitochondrial particles. Biochem. Biophys. Res. Commun. 34, 104–111 (1969)

    Google Scholar 

  • Morgan, J.I., Bramhall, J.S., Britten, A.Z., Perris, A.D.: Calcium and oestrogen interactions upon the rat thymic lymphocyte plasma membrane. Biochem. Biophys. Res. Commun. 72, 663–672 (1976)

    Google Scholar 

  • Morgan, J.I., Hall, A.K., Perris, A.D.: Requirements for divalent cations by hormonal mitogens and their interactions with sex steroids. Biochem. Biophys. Res. Commun. 66, 188–194 (1975)

    Google Scholar 

  • Naitoh, Y., Eckert, R.: Electrical properties of Paramecium caudatum: modification by bound and free cations. Z. Vergl. Physiol. 61, 427–472 (1968)

    Google Scholar 

  • Nakajima, S., Gilai, A., Dingeman, D.: Dye absorption changes in single muscle fibers: An application of an automatic balancing circuit. Pflügers Arch. 362, 285–287 (1976)

    Google Scholar 

  • Naparstek, A., Slayman, C.: Metabolism-dependent changes of membrane potential in Neurospora, tracked with an optical probe. Biophys. J. 16, 21a (1976)

    Google Scholar 

  • Oesterhelt, D., Stoeckenius, W.: Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature (New Biol.) 233, 149–152 (1971)

    Google Scholar 

  • Oetliker, H., Baylor, S.M., Chandler, W.K.: Simultaneous changes in fluorescence and optical retardation in single muscle fibres during activity. Nature 257, 693–696 (1975)

    Google Scholar 

  • Ohta, M., Narahashi, T., Keeler, R.F.: Effects of veratrum alkaloids on membrane potential and conductance of squid and crayfish giant axons. J. Pharmac. Exp. Ther. 184, 143–154 (1973)

    Google Scholar 

  • Packer, L., Donovan, M.P., Wrigglesworth, J.M.: Oscillations of 8-Anilinonaphthalen-1-sulfonic acid fluorescence in mitochondria. Biochem. Biophys. Res. Commun. 35, 832–838 (1969)

    PubMed  Google Scholar 

  • Patrick, J., Valeur, B., Monnerie, L., Changeux, J.-P.: Changes in extrinsic fluorescence intensity of the electroplax membrane during electrical excitation. J. Memb. Biol. 5, 102–120 (1971)

    Google Scholar 

  • Peachey, L.D., The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J. Cell Biol. 25, No. 3, II, 209–231 (1965)

    Google Scholar 

  • Pick, U., Avron, M.: Measurement of transmembrane potentials in Rhodospirillum rubrum chromatophores with an oxacarbocyanine dye. Biochem. Biophys. Acta 440, 189–204 (1976)

    Google Scholar 

  • Podleski, T., Changeux, J.-P.: Effects associated with permeability change caused by gramicidin A in electroplax membrane. Nature 221, 541–545 (1969)

    Google Scholar 

  • Pooler, J.: Photodynamic alteration of sodium currents in lobster axons. J. Gen. Physiol. 60, 367–387 (1972)

    PubMed  Google Scholar 

  • Radda, G.K.: The design and use of fluorescent probes for membrane studies. Curr. Top. Bioenerg. 4, 81–126 (1971)

    Google Scholar 

  • Renthal, R., Lanyi, J.K.: Light-induced membrane potential and pH gradient in Halobacterium halobium envelope vesicles. Biochemistry 15, 2136–2143 (1976)

    PubMed  Google Scholar 

  • Ross, W.N., Reichardt, L.F.: Species-specific effects on the optical signals of voltage-sensitive dyes. J. Gen. Phys. 70, 15a–16a (1977)

    Google Scholar 

  • Ross, W.N., Salzberg, B.M., Cohen, L.B., Davila, H.V.: A large change in dye absorption during the action potential. Biophys. J. 14, 983–986 (1974)

    Google Scholar 

  • Ross, W.N., Salzberg, B.M., Cohen, L.B., Grinvald, A., Davila, H.V., Waggoner, A.S., Wang, C.H.: Changes in absorption, fluorescence, dichroism, and birefringence in stained giant axons: Optical measurement of membrane potential. J. Memb. Biol. 33, 141–183 (1977)

    Google Scholar 

  • Rottenberg, H.: The measurement of transmembrane electrochemical proton gradients. J. Bioenerg. 7, 61–74 (1975)

    PubMed  Google Scholar 

  • Salama, G., Morad, M.: Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart. Science 191, 485–487 (1976)

    Google Scholar 

  • Salama, G., Morad, M.: Use of fluorescent dyes to evaluate single sucrose gap voltage clamp technique in frog heart. Biophys. J. 17, 5a (1977)

    Google Scholar 

  • Salzberg, B.M., Davila, H.V., Cohen, L.B.: Optical recording of impulses in individual neurons of an invertebrate central nervous system. Nature 246, 508–509 (1973)

    Google Scholar 

  • Salzberg, B.M., Davila, H.V., Cohen, L.B., Waggoner, A.S.: A large change in axon fluorescence, potentially useful in the study of simple nervous system. Biol. Bull. Mar. Biol. Lab., Woods Hole 143, 475 (1972)

    Google Scholar 

  • Salzberg, B.M., Grinvald, A., Cohen, L.B., Davila, H.V., Ross, W.N.: Optical recording of neuronal activity in an invertebrate central nervous system: Simultaneous monitoring of several neurons. J. Neurophysiology 40, 1281–1291 (1977)

    Google Scholar 

  • Schmidt, S., Reich, R., Witt, H.T.: Electrochromism of chlorophylls and carotenoids in multilayers and chloroplasts. Naturwissenschaften 58, 414 (1971)

    Google Scholar 

  • Schmidt, S., Reich, R., Witt, H.T.: Electrochromic measurements in vitro as test for the interpretation of field indicating absorption changes in photosynthesis. Proc. IInd Intern. Congr. Photosynthesis, 1971, Stresa, Vol. II, 1087–1095 (1972)

    Google Scholar 

  • Schuldiner, S., Kaback, H.R.: Membrane potential and active transport in membrane vesicles from Escherichia coli. Biochemistry 14, 5451–5460 (1975)

    PubMed  Google Scholar 

  • Scordilis, S.P., Tedeschi, H., Edwards, C.: Donnan potential of rabbit skeletal muscle myofibrils. I. Electrofluorochromometric detection of potential. Proc. Natl. Acad. Sci. USA 72, 1325–1329 (1975)

    Google Scholar 

  • Simons, T.J.B.: Carbocyanine dyes inhibit Ca-dependent K efflux from human red cell ghosts. Nature 264, 467–469 (1976)

    Google Scholar 

  • Sims, P.J., Waggoner, A.S., Wang, C.-H., Hoffman, J.F.: Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phospho-tidylcholine vesicles. Biochemistry 13, 3315–3330 (1974)

    PubMed  Google Scholar 

  • Skulachev, V.P.: Energy transformation in the respiratory chain. Curr. Top. Bioenerg. 4, 127–190 (1971)

    Google Scholar 

  • Slayman, C.L.: Proton pumping and generalized energetics: A review. In: Membrane Transport in Plants. Zimmermann, U., Dainty, J. (ed.). Berlin-Heidelberg-New York: Springer 1974, pp. 107–119

    Google Scholar 

  • Smith, G.R., Gurson, M.L., Riddell, A.T., Perris, A.D.: Inhibitory action of oestrogen on calcium-induced mitosis in rat bone marrow and thymus. J. Endocr. 65, 45–53 (1975)

    Google Scholar 

  • Smith, J.C., Russ, P., Cooperman, B.S., Chance, B.: Synthesis, structure determination, spectral properties, and energy-linked spectral responses of the extrinsic probe oxonol V in membranes. Biochemistry 15, 5094–5105 (1976)

    Google Scholar 

  • Sone, N., Yoshida, M., Hirata, H., Okamoto, H., Kagawa, Y.: Electrochemical potential of protons in vesicles reconstituted from purified proton-translocating adenosine triphosphatase. J. Memb. Biol. 30, 121–134 (1976)

    Google Scholar 

  • Stoeckenius, W., Lozier, R.H.: Light energy conversion in Halobacterium halobium. J. Supramol. Struct. 2, 769–774 (1974)

    Google Scholar 

  • Szabo, G.: Dual mechanism for the action of cholesterol on membrane permeability. Nature 252, 47–49 (1974)

    Google Scholar 

  • Tasaki, I., Carbone, E., Sisco, K., Singer, I.: Spectral analyses of extrinsic fluorescence of the nerve membrane labeled with aminonaphthalene derivatives. Biochem. Biophys. Acta 323, 220–233 (1973)

    Google Scholar 

  • Tasaki, I., Warashina, A.: Dye-membrane interaction and its changes during nerve excitation. Photochem. Photobiol. 24, 191–207 (1976)

    Google Scholar 

  • Tasaki, I., Watanabe, A., Hallett, M.: Fluorescence of squid axon membrane labeled with hydrophobic probes. J. Memb. Biol. 8, 109–132 (1972)

    Google Scholar 

  • Tasaki, I., Watanabe, A., Sandlin, R., Carnay, L.: Changes in fluorescence, turbidity, and birefringence associated with nerve excitation. Proc. Nal. Acad. Sci. USA 61, 883–888 (1968)

    Google Scholar 

  • Taylor, R.E.: The distribution of membrane current in nerve with longitudinal linearly increasing applied current. Bull. Math. Biophys. 14, 265–292 (1952)

    Google Scholar 

  • Taylor, R.E.: The contractile process is not associated with potential changes. J. Cell Comp. Physiol. 42, 103–123 (1953)

    Google Scholar 

  • Tedeschi, H.: Mitochondrial membrane potential: Evidence from studies with a fluorescent probe. Proc. Natl. Acad. Sci. USA 71, 583–585 (1974)

    Google Scholar 

  • Tosteson, D.C., Gunn, R.B., Wieth, J.O.: Chloride and hydroxyl ion conductance of sheep red cell membrane. In: Erythrocytes, Thrombocytes, Leukocytes. Gerlach, E., Moser, K., Deutsch, E., Wilmanns, W. (eds.). Stuttgart: Thieme 1973, pp. 62–66

    Google Scholar 

  • Tsien, R.Y., Hladky, S.B.: A quantitative resolution of the spectra of a membrane potential indicator, diS-C3(5), bound to cell components and to red blood cells. J. Memb. Biol. 38, 73–97 (1978)

    Google Scholar 

  • Vergara, J., Bezanilla, F.: Fluorescence changes during electrical activity in frog muscle stained with merocyanine. Nature 259, 684–686 (1976)

    Google Scholar 

  • Vergara, J., Bezanilla, F.: Nile blue fluorescence signals in frog single muscle fibers under voltage or current clamp conditions. Biophys. J. 17, 5a (1977)

    Google Scholar 

  • Waggoner, A.: Optical probes of membrane potential. J. Memb. Biol. 27, 317–334 (1976)

    Google Scholar 

  • Waggoner, A., Grinvald, A.: Mechanisms of rapid optical changes of potential sensitive dyes. Ann. N.Y. Acad. Sci. 303, 217–241 (1977)

    Google Scholar 

  • Waggoner, A.S., Sirkin, D., Tolles, R., Wang, C.H.: Rate of membrane permeation of potential sensitive dyes. Biophys. J. 15, 20a (1975)

    Google Scholar 

  • Waggoner, A.S., Wang, C.-H., Tolles, R.L.: Mechanism of potential-dependent light absorption changes of lipid bilayer membranes in the presence of cyanine and oxonol dyes. J. Memb. Biol. 33, 109–140 (1977)

    Google Scholar 

  • Watanabe, A., Terakawa, S.: Alteration of birefringence signals from squid giant axons by intracellular perfusion with protease solution. Biochem. Biophys. Acta 436, 833–842 (1976a)

    Google Scholar 

  • Watanabe, A., Terakawa, S.: A long-lasting birefringence change recorded from a tetanically stimulated squid giant axon. J. Neurobiol. 7, 271–286 (1976b)

    Google Scholar 

  • West, W., Pearce, S.: The dimeric state of cyanine dyes. J. Phys. Chem. 69, 1894–1903 (1965)

    Google Scholar 

  • Witt, H.T., Moraw, R., Muller, A.: Zum Primäprozeß der Photosynthese an Chlorophyllkörnern außerhalb der pflanzlichen Zelle. Z. Elektrochemie 60, 1148–1153 (1956)

    Google Scholar 

  • Witt, H.T., Zickler, A.: Electrical evidence for the field indicating absorption change in bioenergetic membranes. FEBS Lett. 37, 307–310 (1973)

    Google Scholar 

  • Wolff, Ch., Buchwald, H.-E., Rüppel, H., Witt, K., Witt, H.T.: Rise time of the light induced electrical field across the functional membrane of photosynthesis. Z. Naturforsch. 24b, 1038–1041 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag

About this chapter

Cite this chapter

Cohen, L.B., Salzberg, B.M. (1978). Optical measurement of membrane potential. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 83. Reviews of Physiology, Biochemistry and Pharmacology, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-08907-1_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-08907-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08907-0

  • Online ISBN: 978-3-540-35785-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics