Diffusive instabilities in magnetohydrodynamic convection

  • P. H. Roberts
B. Etudes de la convection - liquides newtoniens
Part of the Lecture Notes in Physics book series (LNP, volume 72)


The role played by diffusion in destabilizing dynamically stable fluid flows is reviewed. The resistive instabilities, to which a rapidly rotating Bénard layer lying in a uniform magnetic field is prone, are described. It is shown that diffusivity of heat and field permits convection that would be forbidden in their absence. When the model is generalized to spherical systems and to non-uniform fields a new, even more unstable, mode will occur provided the magnetic diffusivity is sufficiently small (though non-zero).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baldwin, P.; Roberts, P.H. Phil. Trans. Roy. Soc. Lond. 1972 A272, 303.Google Scholar
  2. Braginsky, S.I. Geomag. and Aeron. 1964 4, 572.Google Scholar
  3. Busse, F.H. J. Fluid Mech. 1970 44, 441.Google Scholar
  4. Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability (University Press: Oxford) 1961.Google Scholar
  5. Eltayeb, I.A. Proc. Roy. Soc. Lond. 1972 A326, 229.Google Scholar
  6. Eltayeb, I.A. J. Fluid Mech. 1975 71, 161.Google Scholar
  7. Eltayeb, I.A.; Kumar, S. Proc. Roy. Soc. Lond. 1977 6353, 145.Google Scholar
  8. Eltayeb, I.A.; Roberts, P.H. Astrophys. J. 1970 162, 699.Google Scholar
  9. Furth, H.P.; Killeen, J.; Rosenbluth, M.N. Phys. Fluids 1963 6, 459.Google Scholar
  10. Gibson, R.D.; Kent, A. Quart. J. Mech. and Appl. Math. 1971 24, 63.Google Scholar
  11. Glansdorff, P.; Prigogine, I. Thermodynamic Theory of Structure, Stability and Fluctuation (Interscience: Wiley) 1971.Google Scholar
  12. Goldreich, P.; Schubert, G. Astrophys. J. 1967 150, 571.Google Scholar
  13. Goldreich, P.; Schubert, G. Astrophys. J. 1968 154, 1005.Google Scholar
  14. Hunter, C. Astrophys. J. 1977 213, 497.Google Scholar
  15. Lehnert, B. Astrophys. J. 1954 119, 647.Google Scholar
  16. Lehnert, B. Astrophys. J. 1955 121, 481.Google Scholar
  17. Lin, C.C. The Theory of Hydrodynamic Stability (University Press: Cambridge) 1967.Google Scholar
  18. Malkus, W.V.R. J. Fluid Mech. 1967 28, 793.Google Scholar
  19. Prigogine, I. Introduction to Thermodynamics of Irreversible Processes (Thomas: Springfield, Illinois) 1955.Google Scholar
  20. Reid, W.H. Studies in Appl. Math. 1974a 53, 91.Google Scholar
  21. Reid, W.H. Studies in Appl. Math. 1974b 53, 217.Google Scholar
  22. Roberts, P.H. Phil. Trans. Roy. Soc. Lond. 1968 A263, 93.Google Scholar
  23. Roberts, P.H.; Loper, D.E. 1978, submitted.Google Scholar
  24. Roberts, P.H.; Stewartson, K. Astrophys. J. 1963 137, 1129.Google Scholar
  25. Roberts, P.H.; Stewartson, K. Phil. Trans. Roy. Soc. Lond. 1974 A277, 287.Google Scholar
  26. Roberts, P.H.; Stewartson, K. J. Fluid Mech. 1975 68, 447.Google Scholar
  27. Roberts, P.H.; Stewartson, K. Astron. Nach. 1977, to appear.Google Scholar
  28. Rosenkilde, C.E. Astrophys. J. 1967 148, 825.Google Scholar
  29. Soward, A.M. Phil. Trans. Roy. Soc. Lond. 1974 A271, 611.Google Scholar
  30. Soward, A.M. Geophys. and Astrophys. Fl. Dynam. 1977 9, 19.Google Scholar
  31. Thomson, W.; Tait, P.G. Treatise on Natural Philosphy, Vol. 2 (Constable: London) 1912.Google Scholar
  32. Turner, J.S.; Buoyancy Effects in Fluids (University Press: Cambridge) 1973.Google Scholar
  33. Yih, C.-S. Phys. Fluids 1961 4, 806.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • P. H. Roberts
    • 1
  1. 1.School of MathematicsThe UniversityNewcastle upon TyneUK

Personalised recommendations