Skip to main content

Sorption characteristics for gas-liquid contacting in mixing vessels

  • Conference paper
  • First Online:
Advances in Biochemical Engineering, Volume 8

Part of the book series: Advances in Biochemical Engineering ((ABE,volume 8))

Abstract

This paper deals with the determination of absorption rates in mixing vessels for pure water (coalescent conditions) and for aqueous salt solutions (noncoalescent conditions). Two new measuring techniques will be described. The (non-steady-state) Pressure Gauge Method can be used for any pure gas and any liquid. The (steady-state) Hydrazine Method allows measurements in water or in aqueous solutions without changing the physical or chemical properties of the system. The results are evaluated according to the theory of similarity, the dimensionless process numbers being formed from intensively formulated process parameters. Two correlations were thus obtained, one valied for a coalescent and one for a noncoalescent system. The following process characteristics will be introduced: hollow stirrers and injectors in a noncoalescent system; propeller stirrer, hollow stirrer, flat blade turbine, and an injector for a coalescent system. In the case of the flat blade turbine, the parameter liquid height/vessel diameter was varied by the ratio 1:3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

α [m−1]:

gas-liquid interfacial area per unit volume of liquid

c [ppm or kg m−3]:

concentration of gas dissolved in the liquid

c [g l−1]:

salt concentration of a solution

cs [ppm or kg m−3]:

saturation concentration of the gas dissolved in the liquid

Δc [ppm or kg m−3]:

concentration difference

Δc m[ppm or kg m−3]:

log mean concentration difference

d [mm or m]:

stirrer diameter

D [mm or m]:

vessel diameter

g [m s−2]:

gravitational constant

G [kg s−1]:

gas throughput through the interface

h [mm or m]:

bottom clearance of the stirrer

H [mm or m]:

liquid height in the vessel

H* [mm or m]=(H−h):

liquid height above the stirrer

kL [m s−1]:

liquid-phase mass transfer coefficient

kLα [s−1]:

(ab)sorption rate coefficient

n [min−1 or s−1]:

rotational velocity of the stirrer

P [W or kW]:

mixing power in the gas-liquid dispersion

p [bar]:

system pressure

q [m3 s−1]:

gas throughput

gns [m s−1]:

superficial gas velocity

V [1 or m3]:

liquid volume

x [−]:

mol fraction of the absorbed gas in the gas mixture

Γ [g ions 1−1]:

ionic strength of the electrolyte

ϑ[°C]:

system temperature

\(\mathbb{D}\)[m2 s−1]:

diffusivity of the gas in the liquid

ρ [kg m−3]:

liquid density

ν [m2 s−1]:

liquid kinematic viscosity

σ [kg s−2]:

liquid surface tension

References

  1. Cooper, C. M., Fernstrom, G. A., Miller, S. A.: Ind. Eng. Chem. 36, 504 (1944).

    Google Scholar 

  2. Foust, H. C., Mack, D. E., Rushton, J. H.: Ind. Eng. Chem. 36, 517 (1944).

    Google Scholar 

  3. Vermeulen, T., Williams, G. M., Langlois, G. E.: Chem. Eng. Progress 51, 85-F (1955).

    Google Scholar 

  4. Calderbank, P. H.: Trans. Instn. Chem. Engrs. 36, 443 (1958)

    Google Scholar 

  5. Trans. Instn. Chem. Engrs. 37, 173 (1959).

    Google Scholar 

  6. Westerterp, K. R., van Dierendonck, L. L., de Kraa, J. A.: Chem. Eng. Sci. 18, 157 (1963).

    Google Scholar 

  7. Yoshida, F. et al.: Ind. Eng. Chem. 52, 435 (1960).

    Google Scholar 

  8. In: Recent Progress in Surface Science, Vol. 1. D. A. Haydon, p. 111, New York—London: Academic Press 1964.

    Google Scholar 

  9. Marucci, G., Nicodemo, L.: Chem. Eng. Sci. 22, 1257 (1967).

    Google Scholar 

  10. Lessard, R. R., Zieminski, S. A.: Ind. Eng. Chem. Fundam. 10, 260 (1971).

    Google Scholar 

  11. Robinson, C. W., Wilke, C. R.: Biotechn. and Bioengng. 15, 755 (1973).

    Google Scholar 

  12. Robinson, C. W., Wilke, C. R.: AIChE Journal 20, 285 (1974).

    Google Scholar 

  13. Yagi, H., Yoshida, F.: Ind. Eng. Chem., Process Des. Dev. 14, 488 (1975).

    Google Scholar 

  14. Yoshida, F., Miura, Y.: I & EC Process Des. Dev. 2, 263 (1963).

    Google Scholar 

  15. Linek, V.: Chem. Eng. Sci. 21, 777 (1966).

    Google Scholar 

  16. Zlokarnik, M.: Chem. Ing. Techn. 38, 357 (1966)

    Google Scholar 

  17. Chem. Ing. Techn. 38, 717 (1966).

    Google Scholar 

  18. Zlokarnik, M., Judat, H.: Chem. Ing. Techn. 39, 1163 (1967).

    Google Scholar 

  19. Zlokarnik, M.: Chem. Ing. Techn. 42, 1310 (1970).

    Google Scholar 

  20. Zlokarnik, M.: Theory of similarity in process engineering (in German), p. 84, Bayer AG, Leverkusen 1974.

    Google Scholar 

  21. Zlokarnik, M.: Chem. Ing. Techn. 45, 689 (1973).

    Google Scholar 

  22. Zlokarnik, M.: Chem. Ing. Techn. 47, 281 (1975).

    Google Scholar 

  23. Jackson, M. L.: A.E.Ch.E. Journal 10, 836 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag

About this paper

Cite this paper

Zlokarnik, M. (1978). Sorption characteristics for gas-liquid contacting in mixing vessels. In: Advances in Biochemical Engineering, Volume 8. Advances in Biochemical Engineering, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-08557-2_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-08557-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08557-7

  • Online ISBN: 978-3-540-35958-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics