Application of tower bioreactors in cell mass production

Conference paper
Part of the Advances in Biochemical Engineering book series (ABE, volume 8)


This article considers the applicability of tower bioreactors without mechanical agitation (bubble columns) for cell mass production on alcohol and glucose substrates. The growth of Candida boi-dinii was investigated in one-stage tower reactors for both batch and “extended culture” operations.

Since in the early stage of cell cultivation growth is controlled already solely by the oxygen transfer rate, various aerators and substrates were compared.

Thus three types of aerator and three substrates were investigated under co- and countercurrent-flow conditions. The effects of antifoam agents were studied in the absence of a mechanical foam separator, while either a foam separator or destroyer was included when antifoam agents were not used.

To aid the assessment of the tower bioreactors the following properties were investigated: cell productivity, oxygen transfer rate, volumetric mass transfer coefficient, bubble size, specific gas/liquid interfacial area, and energy requirement. The aerator type as well as the substrate type strongly influenced these properties. To show that not only synthetic culture media can be applied in tower bioreactors complex media were also investigated.

The results prove the applicability of tower bioreactors to cell mass production. These bioreactors are especially attractive because of their high oxygen transfer rate and low energy requirement.


Mass Transfer Coefficient Bubble Size Corn Steep Liquor Bubble Column Perforated Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schügerl, K., Oels, U., Lücke, J.: Bubble column bioreactors. In: Advances in Biochemical Engineering, Vol. 7, p. 1. Berlin, Heidelberg, New York: Springer 1977.Google Scholar
  2. 2.
    Padday, J. F.: The Theory of Surface Tension. In: Surface and Colloid Science. Vol. 1, p. 39: Matijevic, E. (Ed.) New York: Wiley-Intersicence 1969.Google Scholar
  3. 3.
    Joly, M.: Rheological properties of Monomolecular Films. In: Surface and Colloid Science, Vol. 1, p. 1. Matijevic, E. (Ed.) New York: Wiley-Intersicence, 1969.Google Scholar
  4. 4.
    Davies, J. T., Rideal, E. K.: Interfacial Phenomena. New York: Acad. Press 1963.Google Scholar
  5. 5.
    Davies, J. T.: Mass Transfer and Interfacial Phenomena. In: Advances in Chemical Engineering. Drew, T. B. et al. (Eds.) p. 1. New York: Acad. Press 1963.Google Scholar
  6. 6.
    De Vries, A. J.: Foam Stability, Rubber Sticking. Delft 1957.Google Scholar
  7. 7.
    Schwuger, M. J.: Chemiker Zeitung 96, 248 (1972).Google Scholar
  8. 8.
    De Vries, A. J.: Proc. 2nd. Internat. Congr. Surface Activity 1, 256. London: Butterworths 1957.Google Scholar
  9. 9.
    Cumper, C. W. N.: Trans. Faraday Soc. 49, 1360 (1953).Google Scholar
  10. 10.
    Lücke, J., Oels, Schügerl, K.: Chem. Ing. Techn. 48, 573 (1976).Google Scholar
  11. 11.
    Goldacre, R. J.: Surface films in Surface Phenomena in Chemistry and Biology. Damielli, J. F., et at. (Eds.), pp. 278. Oxford: Pergamon Press 1958.Google Scholar
  12. 12.
    Gifford, W. A., Scriven, L. E.: Chem. Eng. Sci. 26, 287 (1971).Google Scholar
  13. 13.
    Kumar, R., Kuloor, N. R.: Adv. Chem. Engng. Vol. 8. Drew, T. B. et al. (Eds.). New York: Acad. Press 1970.Google Scholar
  14. 14.
    Calderbank, P. H.: Mass transfer in Fermentation Equipments. In: Biochemical and Biological Engineering Science, Vol. 1, p. 102. N. Blakebrough (Ed.) New York: Acad. Press 1967.Google Scholar
  15. 15.
    Kolmogoroff, A. N.: Compt. rend. acad. sci. U. S. S. R. 30, 301 (1941); see also in “Turbulence” classic papers on statistical theory. Friedlander, S. K., Topper, L., (Eds.) p. 159. New York: Interscience 1961.Google Scholar
  16. 16.
    Batchelot, G. K.: Camb. Phil. Soc. 47, 359 (1951).Google Scholar
  17. 17.
    Levich, V. G.: Physiochemical Hydrodynamics. Englewood Cliffs, N. J.: Prentice Hall 1962.Google Scholar
  18. 18.
    Davis, R. E., Acrivos, A.: Chem. Eng. Sci. 21, 681 (1966).Google Scholar
  19. 19.
    Saville, D. A.: The Chemical Engineering Journal 5, 251 (1973).Google Scholar
  20. 20.
    Ruckenstein, E.: Chem. Eng. Sci 19, 505 (1964).Google Scholar
  21. 21.
    Blank, M.: J. Phys. Chem. 65, 1698 (1961).Google Scholar
  22. 22.
    Davies, J. T., Mayers, G. R. A.: Chem. Eng. Sci. 16, 55 (1961).Google Scholar
  23. 23.
    Baird, M. H. I., Davidson, J. H.: Chem. Eng. Sci. 17, 87 (1962).Google Scholar
  24. 24.
    Garner, F. H., Skelland, A. H. P.: Chem. Eng. Sci. 4, 149 (1955).Google Scholar
  25. 25.
    West, F. B., et al.: Ind. Eng. Chem. 43, 234 (1951); 44, 625 (1952).Google Scholar
  26. 26.
    Garner, F. H., Hale, A. R.: Chem. Eng. Sci. 2, 157 (1953).Google Scholar
  27. 27.
    Hancher, C. W., Thacker, L. H., Phares, E. F.: Biotechn. Bioeng. 16, 475 (1974).Google Scholar
  28. 28.
    Bucholz, R.: Diplomarbeit, Technical University, Hanover 1976.Google Scholar
  29. 29.
    Lücke, J.: Doctoral Thesis, Technical University, Hanover 1976.Google Scholar
  30. 30.
    Electrolux Environmental Systems Division.Google Scholar
  31. 31.
    Marucci, G., Nicodemo, H.: Chem. Eng. Sci. 22, 1257 (1967).Google Scholar
  32. 32.
    Zieminski, S. A., Caron, M. M., Blackmore, R. B.: Ind. Eng. Chem. Fundamentals 6, 233 (1967).Google Scholar
  33. 33.
    Jackson, R.: Chem. Eng. No. 178, 107 (1964).Google Scholar
  34. 34.
    Addison, C. C: J. Chem. Soc. 535 (1943); 252, 477 (1944); 98 (1945).Google Scholar
  35. 35.
    Brown, A. G., Thumann, W. C, and McBain, I. W.: J. Colloid. Sci. 8, 491, 508 (1953).Google Scholar
  36. 36.
    Sawistowski, H., Goltz, G. E.: Trans. Instn. Chem. Eng. 41, 174 (1963).Google Scholar
  37. 37.
    Sawistowski, H.: Interfacial Phenomena. In: Recent advances in liquid-liquid extraction. Hanson, C. (Ed.) p. 293. London: Pergamon Press 1971.Google Scholar
  38. 38.
    Handbook of Chemistry and Physics. Hodgman, Ch. Weast, R. C, Selby, S. M. (Eds.). Cleveland: The Chemical Rubber Publishing Co. 1960.Google Scholar
  39. 39.
    Danckwerts, P. V.: Gas-liquid reactions. New York: McGraw Hill 1970.Google Scholar
  40. 40.
    Oels, U., Lücke, J., Schügerl, K.: Chem. Ing. Techn. 49, 59 (1977).Google Scholar
  41. 41.
    Reuß, M., Piehl, Wagner, F.: Fifth International Fermentation Symposium Berlin 1976, Dellweg, H. (Ed.) p. 25.Google Scholar
  42. 42.
    Vogelmann, H., Eppert, K., Wagner, F.: Fifth International Fermentation Symposium, Berlin 1976, Dellweg, H. (Ed.) p. 28.Google Scholar
  43. 43.
    Vogelmann, H., Reuss, M., Gnieser, J., Wagner, F.: 3. Symposium Technische Mikrobiologie Berlin 1973, Inst. für Gärungsgewerbe und Biotechnologie, Dellweg, H. (Ed.) p. 215.Google Scholar
  44. 44.
    Zlokarnik, M. (article in this volume).Google Scholar
  45. 45.
    Oels, U., Doctoral Thesis, Technical University, Hanover 1975.Google Scholar
  46. 46.
    Todt, J., Doctoral Thesis, Technical University Hanover 1974.Google Scholar
  47. 47.
    Todt, J., Lücke, J., Schügerl, K., Renken, A.: Chem. Eng. Sci. 32, 369 (1977).Google Scholar
  48. 48.
    Oels, U., Schügerl, K., Todt, J.: Chem. Ing. Techn. 48, 73 (1976).Google Scholar
  49. 49.
    König, B.: Diplomarbeit, Technical University Hanover 1976.Google Scholar
  50. 50.
    Nagel, O., Kürten, H., Sinn, R.: Chem. Ing. Techn. 42, 474 (1970).Google Scholar
  51. 51.
    Nagel, O., Kürten, H., Hegner, B., Sinn, R.: Chem. Ing. Techn. 42, 921 (1970).Google Scholar
  52. 52.
    Brauer, H.: Grundlagen der Einphasen-und Mehrphasenströmungen, Aarau-Frankfurt/M.: Sauerländer 1971.Google Scholar
  53. 53.
    Ruff, K.: Chem. Ing. Techn. 46, 769 (1974).Google Scholar
  54. 54.
    Luttmann, R.: Diplomarbeit, Technical University Hanover 1976.Google Scholar
  55. 55.
    Pratt, H. R. C: Ind. Chemist 31, 63 (1955).Google Scholar
  56. 56.
    Adler, I.: Diplomarbeit, Technical University Berlin 1975.Google Scholar
  57. 57.
    Marucci, G.: Chem. Eng. Sci. 24, 975 (1964).Google Scholar
  58. 58.
    Deckwer, W. D., Burckhart, R., Zoll, G.: Chem. Eng. Sci. 29, 2177 (1974).Google Scholar
  59. 59.
    Reuß, M.: Doctoral Thesis, Technical University Berlin 1970.Google Scholar
  60. 60.
    Reuss, M., Lehmann, J.: Application of multiphase models for biological processes. Presented on the Seminar “Methods of chemical kinetics and its application”. Austrian working group “Chemisches Apparatewesen und Verfahrenstechnik” Graz. 25/26. Sept. 1975.Google Scholar
  61. 61.
    Reuss, M.: Fifth Internat. Ferment. Symp. Berlin 1976, p. 89.Google Scholar
  62. 62.
    Deckwer, W. D., Zaidi, A., Adler, I.: Chem. Ing. Techn. 49, 507 (1977).Google Scholar
  63. 63.
    Sahm, H., Wagner, F.: Arch. Microbiol. 84, 29 (1972).Google Scholar
  64. 64.
    Sahm, H., Wagner, F.: Euro. J. Biochem. 36, 250 (1973).Google Scholar
  65. 65.
    Tani, Y., Miya, T., Ogata, K.: Agr. Biol. Chem. 36, 76 (1972).Google Scholar
  66. 66.
    van Dijken, J. P.: Ph. D. Thesis, University Groningen, Holland 1976.Google Scholar
  67. 67.
    Roggenkamp, R., Sahm, H., Wagner, F.: FEBS Letters 41, 283 (1974).Google Scholar
  68. 68.
    van Dijken, J. P., Veenhuis, M., Vermeulen, C. A., Harder, W.: Arch. Microbiol. 105, 261 (1975).Google Scholar
  69. 69.
    Roggenkamp, R., Sahm, H., Hinkelmann, W., Wagner, F.: Euro. J. Biochem. 59, 231 (1975).Google Scholar
  70. 70.
    Fukui, S., Kawamoto, S., Yasuhara, S., Tanaka, A.: Euro. J. Biochem. 59, 561 (1975).Google Scholar
  71. 71.
    Fujii, T., Tonomura, K.: Agr. Biol. Chem. 36, 2297 (1972).Google Scholar
  72. 72.
    Kato, N., Tani, Y., Ogata, K.: Agr. Biol. Chem. 38, 675 (1975).Google Scholar
  73. 73.
    Sahm, H., Wagner, F.: Arch. Microbiol. 90, 263 (1973).Google Scholar
  74. 74.
    Schütte, H., Floßdorf, J., Sahm, H., Kula, M. R.: Euro. J. Biochem. 62, 151 (1976).Google Scholar
  75. 75.
    Sahm, H.: Arch. Microbiol. 105, 179 (1975).Google Scholar
  76. 76.
    Harder, W., van Dijken, J. P.: In: Microbial Growth on C1-Compounds the society of Fermentation Technology, Japan, 1975, p. 155.Google Scholar
  77. 77.
    Davey, J. F., Whittenbury, R., Wilkinson, J. F.: Arch. Microbiol. 87, 359 (1972).Google Scholar
  78. 78.
    Strom, T., Ferenci, T., Quayle, J. R.: Biochem. J. 144, 465 (1974).Google Scholar
  79. 79.
    Colby, J., Zatman, L. J.: Biochem. J. 148, 513 (1975).Google Scholar
  80. 80.
    Dix, B.: Diplomarbeit, University, Braunschweig 1975.Google Scholar
  81. 81.
    Quayle, J. R.: Adv. Microbial Physiol. 7, 119 (1972).Google Scholar
  82. 82.
    Sahm, H., Wagner, F.: Arch. Microbiol. 97, 163 (1974).Google Scholar
  83. 83.
    Fujii, T., Asada, Y., Tonomura, K.: Agr. Biol. Chem. 38, 1121 (1974).Google Scholar
  84. 84.
    van Dijken, J. P., Harder, W.: Biotechn. Bioeng. 17, 15 (1975).Google Scholar
  85. 85.
    Reuss, M., Sahm, H., Wagner, F.: Chem. Ing. Techn. 46, 669 (1974).Google Scholar
  86. 86.
    Pilat, P., Prokop, A.: Biotechn. Bioeng. 17, 1717 (1975).Google Scholar
  87. 87.
    Reuss, M., Gnieser, J., Reng, H. G., Wagner, F.: Euro. J. Appl. Microbiol. 1, 295 (1975).Google Scholar
  88. 88.
    Payne, W. J.: Ann. Rev. Microbiol. 29, 17 (1970).Google Scholar
  89. 89.
    Abbott, J. B., Laskin, A. I., Meloy, C. J.: J. Appl. Microbiol. 25, 787 (1973).Google Scholar
  90. 90.
    Nemethy, G.: Angewandte Chemie, Internat. Edition 6 (3) 915 (1967).Google Scholar
  91. 91.
    Lücke, J., Oels, U., Schügerl, K.: Chem. Ing. Techn., 48, 573 (1976); 49, 161 (1977).Google Scholar
  92. 92.
    Sonntag, H., Strenge, K.: Koagulation und Stabilität disperser Systeme. Berlin: 1970 VEB Deutscher Verlag der Wissenschaften 1970.Google Scholar
  93. 93.
    Meister, B., Scheele, G. F.: A. I. Ch. E. J. 13, 682 (1967).Google Scholar
  94. 94.
    Rayleigh, Lord: Phil. Mag. (London) 34, 177 (1892).Google Scholar
  95. 95.
    Tyler, E.: Phil. Mag. (London, Edinburg, Dublin) 16, 504 (1933).Google Scholar
  96. 96.
    Hinze, J. O.: A. I. Ch. E. J. 1, 289.(l955).Google Scholar
  97. 97.
    Mateles, R. I.: Biotechn. Bioeng. 13, 581 (1971).Google Scholar
  98. 98.
    Cejka, A.: 3. Symposium Technische Mikrobiologie Berlin 1973, Inst. f. Gärungsgewerbe, S. 281.Google Scholar
  99. 99.
    European Chemical News 15, 3, 30 (1974).Google Scholar
  100. 100.
    MacLaren, D. D.: Chem. Technol. 594 (1975).Google Scholar
  101. 101.
    Schrader, U., Vogelmann, H., Wagner, F.: D. P. application, P 260–4959.8.Google Scholar
  102. 102.
    Koide, K., Hayashi, T., Sumino, K., Iwamoto, S.: Chem. Eng. Sci. 31, 963 (1976).Google Scholar
  103. 103.
    Graham, D. E., Phillips, M. C: Chapter 16. The conformation of proteins at the air-water interface and their role in stabilizing foams. In: Foams. Int. Symp. Brunei University 1975. Smith, A, L., (Ed.) New York: Acad. Press 1975.Google Scholar
  104. 104.
    Benjamins, J., Feijter, J. A., de Evans, M. T. A., Graham, D. E., Phillips, M. C: Faraday Discussions of the Chemical Society No. 59, 218 (1975).Google Scholar
  105. 105.
    Jederström, G., Rydhag, L., Friberg. S.: J. Pharmaceutical Sciences 62 (12) 1979 (1973).Google Scholar
  106. 106.
    Saito, H., Friberg, S.: Praman, Suppl. No.1, 537 (1975).Google Scholar
  107. 107.
    Schügerl, K.: Chem. Ing. Techn. 49, 605 (1977).Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  1. 1.Institut für Technische Chemie der TU HannoverHannover
  2. 2.Gesellschaft für Biotechnologische Forschung mbHStöckheim

Personalised recommendations