Advertisement

Technical aspects of the rheological properties of microbial cultures

Conference paper
Part of the Advances in Biochemical Engineering book series (ABE, volume 8)

Abstract

The rheological properties of culture fluids have a profound effect on the course of a fermentation, the response and reliability of sensors, and on the difficulty of recovery processes. In addition, the rheological properties can be sensitive indicators of the state of a fermentation and can be useful for purposes of control and monitoring. In this paper the fundamentals and important nomenclature of rheology are introduced, the merits of various experimental methods for measuring rheological properties are discussed, critical evaluations are presented of past studies of the rheological properties of culture fluids and the effects of these properties, and suggestions are made for further investigation and development.

Keywords

Shear Rate Rheological Property Mass Transfer Coefficient Newtonian Fluid Culture Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van Wazer, J. R., Lyons, J. W., Lim, K. Y., Colwell, R. E.: Viscosity and Flow Measurement, p. 23. New York: Interscience 1963.Google Scholar
  2. 2.
    Bird, R. B., Stewart, W. E., Lightfoot, E. N.: Transport Phenomena, Chap. 3. New York: Wiley 1960.Google Scholar
  3. 3.
    Fredrickson, A. G.: Principles and Applications of Rheology. Englewood Cliffs, N. J.: Prentice-Hall, 1964.Google Scholar
  4. 4.
    Wilkinson, W. L.: Non-Newtonian Fluids, pp. 130–134. New York: Pergamon 1960.Google Scholar
  5. 5.
    Skelland, A. H. P.: Non-Newtonian Flow and Heat Transfer, p. 40. New York: Wiley (1967).Google Scholar
  6. 6.
    Ibid. p. 39–47.Google Scholar
  7. 7.
    Middleman, S.: The Flow of High Polymers, Chap. 2. New York: Interscience 1968.Google Scholar
  8. 8.
    Krieger, I. M., Maron, S. H.: J. Appl. Phys. 23, 147 (1952).Google Scholar
  9. 9.
    Ibid. 24, 134 (1953).Google Scholar
  10. 10.
    Ibid. 25, 72 (1954).Google Scholar
  11. 11.
    Metzner, A. B., Taylor, J. S.: AIChE J. 6, 109 (1960).Google Scholar
  12. 12.
    Wilkinson, W. L.: Non-Newtonian Fluids, p. 5. New York: Pergamon 1960.Google Scholar
  13. 13.
    Bird, R. B., Stewart, W. E., Lightfoot, E. N.: Transport Phenomena, New York: Wiley 1960.Google Scholar
  14. 14.
    Wilkinson, W. L.: Non-Newtonian Fluids. New York: Pergamon 1960.Google Scholar
  15. 15.
    Fredrickson, A. G.: Principles and Applications of Rheology. Englewood Cliffs, N. J.: Prentice-Hall 1964.Google Scholar
  16. 16.
    Skelland, A. H. P.: Non-Newtonian Flow and Heat transfer. New York: Wiley 1967.Google Scholar
  17. 17.
    Wilkinson, W. L.: Non-Newtonian Fluids, pp. 3, 53–55. New York: Pergamon 1960.Google Scholar
  18. 18.
    Roels, J. A., Van Den Berg, J., Voncken, R. M.: Biotechn. Bioeng. 16, 181 (1974).Google Scholar
  19. 19.
    Wilkinson, W. L.: Non-Newtonian Fluids, p. 6–9. New York: Pergamon 1960.Google Scholar
  20. 20.
    Charles, M., Toth, G. M.: paper presented at the 168th Annual Meeting of the American Chemical Society, Atlantic City, N. J., Sept. 8–13, 1974.Google Scholar
  21. 21.
    Charles, M.: Unpublished data.Google Scholar
  22. 22.
    Ulbrecht, J.: The Chem. Eng., June 1974, 347.Google Scholar
  23. 23.
    Metzner, A. B., Otto, R. E.: AIChE J. 3, 3 (1957).Google Scholar
  24. 24.
    Foresti, R., Liu, T.: IEC 51, 860 (1950).Google Scholar
  25. 25.
    Calderbank, P. H., Moo-Young, M. B.: Trans. Inst. Chem. Eng. 37, 22 (1959).Google Scholar
  26. 26.
    Ibid. 39, 22 (1961).Google Scholar
  27. 27.
    Skelland, A. N. P.: Non-Newtonian Flow and Heat Transfer, Chap. 5. New York: Wiley 1967.Google Scholar
  28. 28.
    Van Wazer, J., Lyons, J. W., Lim, K. Y., Colwell, R. E.: Viscosity and Flow Measurement, New York: Interscience 1963.Google Scholar
  29. 29.
    Oka, S.: In: Rheology, Theory and Applications, 3. Eirich, F. R. (Ed.), New York: Academic Press 1960.Google Scholar
  30. 30.
    Van Wazer, J. R., Lyons, J. W., Lim, K. Y., Cowell, R. E.: Viscosity and Flow Measurement, pp. 199–214. New York: Interscience 1963.Google Scholar
  31. 31.
    Skelland, A. P. H.: Non-Newtonian Flow and Heat Transfer, p. 32–36. New York: Wiley 1967.Google Scholar
  32. 32.
    Middleman, S.: The Flow of High Polymers, p. 15–18. New York: Interscience 1968.Google Scholar
  33. 33.
    Rabinowitsch, B.: Z. Physik. Chem. A 145, 1 (1929).Google Scholar
  34. 34.
    Mooney, M.: J. Rheol. 2, 210 (1931).Google Scholar
  35. 35.
    Van Wazer, J. R., Lyons, J. W., Lim, K. V., Cowell, R. E.: Viscosity and Flow Measurement, Chap. 4. New York: Interscience 1963.Google Scholar
  36. 36.
    Skelland, A. H. P.: Non-Newtonian Flow and Heat Transfer, Chap. 3. New York: Wiley 1967.Google Scholar
  37. 37.
    Goldsmith, H. L., Mason, S. G.: In: Rheology, Theory and Application, Vol. 4, p. 215–220, Eirich, F. R. (Ed.) New York: Academic Press 1967Google Scholar
  38. 38.
    Loucaides, R., McManamey, W.J.: Chem. Eng. Sci. 28, 2165 (1973).Google Scholar
  39. 39.
    Van Wazer, J. R., Lyons, J. W., Lim, K. Y., Cowell, R. E.: Viscosity and Flow Measurement, p. 139–150. New York: Interscience 1963.Google Scholar
  40. 40.
    Skelland, A. H. P.: Non-Newtonian Flow and Heat Transfer, p. 47. New York: Wiley 1967.Google Scholar
  41. 41.
    Middleman, S.: The Flow of High Polymers, p. 25–28. New York: Wiley 1968.Google Scholar
  42. 42.
    Bongenaar, J. J. T. M., Kossen, N. W. F., Metz, B., Meijboom, F. W.: Biotech. Bioeng. 15, 201 (1973).Google Scholar
  43. 43.
    Charles, M.: Unpublished data.Google Scholar
  44. 44.
    Charles, M.: Unpublished data.Google Scholar
  45. 45.
    Van Wazer, J. R., Lyons, J. W., Lim, K. Y., Cowell, R. E.: Viscosity and Flow Measurement, p. 150–156. New York: Interscience 1963.Google Scholar
  46. 46.
    Humphrey, A. E.: Paper presented at the Labex Symposium on Computer Control of Fermentation Processes, Labex International, Earls Court, London, 1971.Google Scholar
  47. 47.
    Nyiri, L. K.: ibid.Google Scholar
  48. 48.
    Fewkes, C. J., Wang, D. I. C: Paper presented at First Chemical Congress of the North American Continent, Mexico City, Mexico, Nov. 30–Dec. 5, 1975.Google Scholar
  49. 49.
    Morris, G. G., Greenshields, R. N., Smith, E. L.: Biotechn. Bioeng. Symp. 4, 535 (1963).Google Scholar
  50. 50.
    Solomons, G. L., Weston, G. O.: Biotech. Bioeng. 1, 1 (1961).Google Scholar
  51. 51.
    Deindoerfer, F. H., Gaden, E. L.: Appl. Micro. 3, 253 (1955).Google Scholar
  52. 52.
    Deindoerfer, F. H., West, J. M.: Biotech. Bioeng. 2, 165 (1960).Google Scholar
  53. 53.
    Richards, J. W.: Prog. Ind. Micro. 3, 141 (1961).Google Scholar
  54. 54.
    Tuffile, C. M., Pinho, F.: Biotech. Bioeng. 12, 849 (1970).Google Scholar
  55. 55.
    Taguchi, H., Miyamoto, S.: Biotech. Bioeng. 8, 43 (1966).Google Scholar
  56. 56.
    Charles, M.: Unpublished data.Google Scholar
  57. 57.
    Charles, M.: Unpublished data.Google Scholar
  58. 58.
    Jeanes, A., Pittsley, J. E.: J. Appl. Poly. Sci. 17, 1621 (1973).Google Scholar
  59. 59.
    Kelco Co.: Xanthan Gum (1975).Google Scholar
  60. 60.
    Patton, T. C: J. Paint Tech. 38, 656 (1966).Google Scholar
  61. 61.
    Patton, T. C: Cereal Sci. Today, 14, 178 (1969).Google Scholar
  62. 62.
    LeDuy, A., Marsan, A. A., Coupal, B.: Biotech. Bioeng. 16, 61 (1974).Google Scholar
  63. 63.
    Charles, M., Radjai, M. K.: Paper presented at the First International Congress on Engineering and Food, Aug. 9–14, 1976, Boston, Mass.Google Scholar
  64. 64.
    Charles, M., Radjai, M. K.: Paper presented at the 172nd ACS National Meeting, Symposium on Extracellular Microbial Polysaccharides of Industrial Importance, San Francisco, CA, Aug. 31, 1976.Google Scholar
  65. 65.
    Rogovin, S. P., Anderson, R. F., Cadmus, M. C: Biotechn. Bioeng. 1, 51 (1961).Google Scholar
  66. 66.
    Moraine, R. A., Rogovin, S. P.: Biotechn. Bioeng. 13, 381 (1971).Google Scholar
  67. 67.
    Knittig, E., Zajic, J. E.: Biotech. Bioeng. 14, 379 (1972).Google Scholar
  68. 68.
    Kosaric, N., Yu, J. E., Zajic, J. E.: Biotech, Bioeng. 15, 729 (1973).Google Scholar
  69. 69.
    Rogovin, S. P., Sohno, V.E., Griffin, E. L.: IEC 53, 37 (1961).Google Scholar
  70. 70.
    Burton, K. A., Cadmus, M. C, Lagoda, A. A., Sanford, P. A., Watson, P. R.: Biotech. Bioeng. 18, 1669 (1976).Google Scholar
  71. 71.
    Deindoerfer, F. H., West, J. M.: Adv. Appl. Micro. 2, 265 (1960).Google Scholar
  72. 72.
    Eirich, F.: Kolloid Z. 74, 276 (1936).Google Scholar
  73. 73.
    Shimmons, B. W., Svrcek, W. Y., Zajic, J. E.: Biotech. Bioeng. 18, 1793 (1976).Google Scholar
  74. 74.
    Modeer, B.: Proc. Biochem., Sept. 1974, 23.Google Scholar
  75. 75.
    Goldsmith, H. L., Mason, S. G.: In: Rheology, Theory and Applications, Vol. 4. New York: Academic Press (1967).Google Scholar
  76. 76.
    Levenspiel, O.: Chemical Reaction Engineering, Chaps. 9, 10. New York: Wiley 1962.Google Scholar
  77. 77.
    Smith, J. M.: Chemical Engineering Kinetics, Chap. 6. New York: McGraw-Hill 1970.Google Scholar
  78. 78.
    Bailey, J. E., Ollis, D. F., Biochemical Engineering Fundamentals, Chap. 9. New York: McGraw-Hill (in press)Google Scholar
  79. 79.
    Nagata, S.: Mixing: Principles and Applications, p. 194. New York: Wiley 1975.Google Scholar
  80. 80.
    Novak, V., Riegler, F.: Che. Eng. J. 9, 63 (1975).Google Scholar
  81. 81.
    Moo-Young, M., Tichar, K., Dullien, F. A.: AIChE J. 18, 178 (1972).Google Scholar
  82. 82.
    Nagata, S., Nishikawa, M., Katsube, T., Takaish, K.: Int. Inl. Che. Eng. 12, 715 (1972).Google Scholar
  83. 83.
    Hoogendorn, C. J., Den Hartog, A. P.: CES 22, 1689 (1967).Google Scholar
  84. 84.
    Norwood, K. W., Metzner, A. B.: AIChE J. 6, 432 (1960).Google Scholar
  85. 85.
    Fox, E. A., Gex, V. E.: AIChE J. 2, 539 (1956).Google Scholar
  86. 86.
    Godleski, E. S., Smith, J. C: AIChE J. 8, 617 (1962).Google Scholar
  87. 87.
    Khang, S. J., Levenspiel, O.: Chem. Eng., Oct. 11, 1976, 141.Google Scholar
  88. 88.
    Nagata, S.: Mixing: Principles and Applications, p. 204. New York: Wiley 1975.Google Scholar
  89. 89.
    Ibid. p. 206.Google Scholar
  90. 90.
    Hicks, R. W., Morton, J. R., Fenic, J. G.: Chem. Eng., Apr. 26, 1976.Google Scholar
  91. 91.
    Nagata, S.: Mixing: Principles and Applications, p. 200. New York: WileyGoogle Scholar
  92. 92.
    Wang, D. I. C, Humphrey, A. H.: In: Progress in Industrial Microbiology, Vol. 8. Hockenhull, J. J. D. (Ed.) Cleveland: CRC Press 1968.Google Scholar
  93. 93.
    Hyman, D.: In: Advances in Chemical Engineering, Vol. 3, p. 120. Drew, T. B., Hoopes, J. W., Vermeulen, T. (Ed.) New York: Academic Press (1962).Google Scholar
  94. 94.
    Phillips, D. H., Johnson, M. J.: Biotech. Bioeng. 3, 277 (1961).Google Scholar
  95. 95.
    Maxon, W. D.: Biotech. Bioeng. 1, 311 (1959).Google Scholar
  96. 96.
    Steel, R., Maxon, W. D.: Biotech. Bioeng. 8, 97 (1966).Google Scholar
  97. 97.
    Steel, R., Maxon, W. D.: Biotech. Bioeng. 8, 109 (1966).Google Scholar
  98. 98.
    Blakebrough, N., Sambamurthy, K.: Biotech. Bioeng. 8, 25 (1966).Google Scholar
  99. 99.
    Wang, D. I. C, Fewkes, R. C. J.: Paper presented at the Thirty Second Meeting of the Society of Industrial Microbiology, Jekyll Island, Georgia, Aug. 16–20, 1976.Google Scholar
  100. 100.
    Charles, M.: Unpublished data.Google Scholar
  101. 101.
    Leamy, G. H.: Chem. Eng., Oct. 15, 115 (1973).Google Scholar
  102. 102.
    Charles, M.: Unpublished data.Google Scholar
  103. 103.
    Chavan, V., V., Arumugam, M. Ulbrecht, J.: AIChE J. 21, 613 (1975).Google Scholar
  104. 104.
    Nagata, S.: Mixing: Principles and Applications, Chap. 1. New York: Wiley 1975.Google Scholar
  105. 105.
    Blanch, H. W., Bhavaraju, S. M.: Biotech. Bioeng. 18, 745 (1976).Google Scholar
  106. 106.
    Wilkinson, W. L.: Non-Newtonian Fluids, Chap. 5. New York: Pergamon 1960.Google Scholar
  107. 107.
    Metzner, A. B.: In: Advances in Chemical Engineering, 1. Drew, T. B., Hoopes, J. W., Vermeulen, T. (Ed.) New York: Academic Press 1956.Google Scholar
  108. 108.
    Metzner, A. B., Feehs, R. H., Ramos, H. L., Otto, R. E., Tuthill, J. D.: AIChE J. 7, 3 (1961).Google Scholar
  109. 109.
    Taguchi, H.: In: Advances in Biochemical Engineering, Vol. 1. Ghose, T. K., Fiechter, A. (Ed.) Berlin, Heidelberg, New York: Springer 1971.Google Scholar
  110. 110.
    Sherwood, T. K., Pigford, R. L., Wilke, C. R.: Mass Transfer. New York: McGraw-Hill 1975.Google Scholar
  111. 111.
    Treyball, R. E.: Mass Transfer Operations. New York: McGraw-Hill 1968.Google Scholar
  112. 112.
    Geankoplis, C. J.: Mass Transport Phenomena. New York: Holt, Rinehart and Winston 1972.Google Scholar
  113. 113.
    Astarita, G.: Mass Transfer With Chemical Reactor. New York: Elsevier 1967.Google Scholar
  114. 114.
    Johnson, D. L., Saito, H., Polejes, J. D., Hougen, O. A.: AIChE J. 3, 411 (1957).Google Scholar
  115. 115.
    Calderbank, P. H., Jones, S. J. R.: Trans. Inst. Che. Eng. 39, 363 (1961).Google Scholar
  116. 116.
    Miller, D. N.: IEC 56 (10), 18(1964).Google Scholar
  117. 117.
    Miller, D. N.: IEC Proc. Des. Dev. 10, 365 (1971).Google Scholar
  118. 118.
    Miura, Y.: In: Advances in Biochemical Engineering, Vol. 4, Ghose, T. K., Fiechter, A., Blakebrough, N. (Eds.) Berlin, Heidelberg, New York: Springer 1976Google Scholar
  119. 119.
    Atkinson, B., Daoud, I. S.: ibid.Google Scholar
  120. 120.
    Atkinson, B., Fowler, H. W.: ibid., Vol. 4 (1976).Google Scholar
  121. 121.
    Smith, J. M.: Chemical Engineering Kinetics, Chaps. 8–12. New York: McGraw-Hill 1970.Google Scholar
  122. 122.
    Carberry, J. J.: Chemical and Catalytic Reaction Engineering, Chaps. 8–10, New York: McGraw-Hill 1976.Google Scholar
  123. 123.
    Charles, M.: Unpublished data.Google Scholar
  124. 124.
    Chain, E. B., Gaulandi, G., Morisi, G.: Biotech. Bioeng. 8, 595 (1966).Google Scholar
  125. 125.
    Perez, J. F., Sandall, O. C: AIChE J. 20, 770 (1974).Google Scholar
  126. 126.
    Yagi, H., Fumitake, Y.: IEC Proc. Des. Dev. 14, 488 (1975).Google Scholar
  127. 127.
    White, J. L., Tokita, N.: J. Appl. Poly. Sci. 11, 321 (1967).Google Scholar
  128. 128.
    M. Charles: Unpublished data.Google Scholar
  129. 129.
    Edwards, M. F., Wilkenson, W. L.: The Chem. Engr., Sept. 1972, 328.Google Scholar
  130. 130.
    Mitsuishi, N., Miyairi, Y.: Inl. Che. Eng. Jap. 6, 415 (1973).Google Scholar
  131. 131.
    Nagata, S.: Mixing: Principles and Applications, Chap. 2, New York: Wiley 1975.Google Scholar
  132. 132.
    LeDuy, A., Zajic, J. E.: Biotech. Bioeng. 15, 579 (1973).Google Scholar
  133. 133.
    Charles, M.: unpublished data.Google Scholar
  134. 134.
    Cadmus, M. C, Burton, K. A., Herman, A. I., Rogovin, S. P.: Bact. Proc. 1971, 447.Google Scholar
  135. 135.
    Powell, A. J., Bu'Lock, J. D. (Eds.): Octagon Papers 2. Manchester, England: University of Manchester 1975.Google Scholar
  136. 136.
    Moraine, R. A., Rogovin, S. P.: Biotech. Bioeng. 15, 225 (1973).Google Scholar
  137. 137.
    Satch, K.: J. Ferm. Techn. 39, 517 (1961).Google Scholar
  138. 138.
    Charles, M.: Unpublished data.Google Scholar
  139. 139.
    Hubbard, D. W., Calvetti, F.: AIChE J. 18, 663 (1972).Google Scholar
  140. 140.
    Johnson, D. N., Hubbard, D. W.: Biotech. Bioeng. 16, 1283 (1974).Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  1. 1.Biochemical Engineering Group, Department of Chemical EngineeringLehigh UniversityBethlehemU.S.A.

Personalised recommendations