Fully developed turbulence, intermittency and magnetic fields

  • Uriel Frisch
IX. Turbulence
Part of the Lecture Notes in Physics book series (LNP, volume 71)


Rayleigh Number Small Scale Structure Intermittent Turbulence Spectral Exponent Dimensional Euler Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. André, J.C. & Lesieur, M. 1977, Evolution of high Reynolds number turbulence, J. Fluid Mech.,to appearGoogle Scholar
  2. Batchelor, G.K. & Townsend, A.A. 1949, Proc. Roy. Soc. A 199, 238Google Scholar
  3. Batchelor, G.K. 1953, Theory of homogeneous turbulence, Cambridge U. PressGoogle Scholar
  4. Childress, S. & Spiegel, E. 1976, Private communicationGoogle Scholar
  5. Frisch, U., Lesieur, M. & Sulem, P.L. 1976, Phys. Rev. Lett. 37, 895CrossRefGoogle Scholar
  6. Frisch, U., Sulem, P.L. & Nelkin, M. 1977, A simple dynamical model of intermittent fully developed turbulence, submitted J. Fluid Mech.Google Scholar
  7. Harvey, J.W. 1976, Private communicationGoogle Scholar
  8. Herring, J. 1973, Private communicationGoogle Scholar
  9. Kolmogorov, A.N. 1941, C. R. Acad. Sci. USSR 30, 301, 538Google Scholar
  10. Kraichnan, R.H. 1965, Phys. Fluids 8, 1385CrossRefGoogle Scholar
  11. Kraichnan, R.H. 1972 in “Statistical Mechanics: New concepts, New problems, New applications”, Rice, S.A., Fried, K.F. & Light, J.C. Eds., University of Chicago Press, ChicagoGoogle Scholar
  12. Kraichnan, R.H. 1974, J. Fluid Mech. 62, 305Google Scholar
  13. Kraichnan, R.H. 1975, J. Fluid Mech. 67, 155Google Scholar
  14. Kuo, A.Y. & Corrsin, S. 1971, J. Fluid Mech. 50, 285Google Scholar
  15. Léorat, J. 1975, Thesis, Observatoire de Meudon, Meudon, FranceGoogle Scholar
  16. Lesieur, M. & Sulem, P.L. 1976, “Les équations spectrales en turbulence homogène et isotrope: quelques rèsultats théoriques et numériques” in “Proc. Journées Mathématiques sur la Turbulence”, Temam, R. ed., Springer Lecture Notes in Math., to appearGoogle Scholar
  17. Lorenz, E.N. 1963, J. Atmos. Sci. 20, 130CrossRefGoogle Scholar
  18. Mandelbrot, B. 1974, J. Fluid Mech. 62, 331Google Scholar
  19. Mandelbrot, B. 1975, “Les Objets Fractals: Forme, Hasard et Dimension”, Flammarion, ParisGoogle Scholar
  20. Mandelbrot, B. 1976, “Intermittent turbulence and fractal dimension: kurtosis and the spectral exponent 5/3 + B” in “Proc. Journées Mathématiques sur la Turbulence”, Orsay, June 1974, Temam, R. ed., Springer Lecture Notes in Mathematics, to appearGoogle Scholar
  21. Monin, A.S. & Yaglom, A.M. 1975, Statistical Fluid Mechanics, vol. 2, MIT PressGoogle Scholar
  22. Novikov, E.A. & Stewart, R.W. 1964, Isvestia Akad. Nauk USSR, Ser. Geophys. n° 3, p. 408Google Scholar
  23. Orszag, S. 1976a, Statistical Theory of Turbulence” in “Proc. Les Houches 1973”, Balian, R. ed., North Holland, to appearGoogle Scholar
  24. Orszag, S. 1976b, Private communicationGoogle Scholar
  25. Pouquet, A. 1976, “Remarks on two dimensional MHD turbulence”, preprintGoogle Scholar
  26. Pouquet, A., Frisch, U. and Léorat, J. 1976, J. Fluid Mech. 77, 321Google Scholar
  27. Stenflo, J.O. 1976, “Influence of magnetic fields on solar hydrodynamics experimental results”, to appear in “Proc. of IAU Coll. n° 36” held at Nice, September 1976Google Scholar
  28. Sulem, P.L. & Frisch, U. 1975, J. Fluid Mech. 72, 4i7Google Scholar
  29. Wolibner, W. 1933, Math. Zeitschr. 37, 698CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Uriel Frisch
    • 1
  1. 1.C. N. R. S. Observatoire de NiceFrance

Personalised recommendations