Dynamical instabilities in stars

  • P. Ledoux
II. Linear Theory
Part of the Lecture Notes in Physics book series (LNP, volume 71)


The linear dynamical instability at the origin of convection in stars is reviewed and shown to depend essentially on the sign of
$$A = \frac{1}{\rho }\frac{{d\rho }}{{dr}} - \frac{1}{{\Gamma _1 p}}\frac{{dp}}{{dr}}$$
which is the usual argument of convection criteria. The case of two or more superadiabatic regions separated by subadiabatic ones might well deserve more detailed attention.

Once this instability is partially removed by the setting in of convection its effects must be balanced by dissipation terms if a stationary state is to result. This yields the value of a Rayleigh number.

If energy generation is included in the non-conservative terms, possibilities are somewhat enriched including a case of dynamical instability in presence of A<O (usually stable) but very small in absolute value.


Rayleigh Number Convection Zone Unstable Mode Dynamical Instability Convective Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BIERMANN, L. 1939, Z. Astrophys., 18, 344Google Scholar
  2. CHANDRASEKHAR, S. 1964, Astrophys. J., 139, 664CrossRefGoogle Scholar
  3. COWLING, T.G. 1941, Mon. Not. Roy. Astr. Soc., 101, 367Google Scholar
  4. DEFOUW, R.J. 1970, Astrophys. J., 160, 659CrossRefGoogle Scholar
  5. DEUPREE, R.G. 1974, Astrophys. J., 194, 393CrossRefGoogle Scholar
  6. DEUPREE, R.G. 1975a, Astrophys. J., 198, 419CrossRefGoogle Scholar
  7. DEUPREE, R.G. 1975b, Astrophys. J., 201, 183CrossRefGoogle Scholar
  8. DEUPREE, R.G. 1976, Astrophys. J., 205, 286CrossRefGoogle Scholar
  9. GOOSENS, M. and SMEYERS, P. 1974, Astrophys. Space Sci., 26, 137CrossRefGoogle Scholar
  10. GRISVARD, P., SOUFFRIN, P. and ZERNER, M. 1972, Astron. and Astrophys., 17, 309Google Scholar
  11. ISLAM, J.N. 1970, Mon. Not. Roy. Astr. Soc., 150, 237Google Scholar
  12. KOVETZ, A. 1967, Z. Astrophys., 66, 446Google Scholar
  13. LANGER, R.E. 1959, Trans. Amer. Math. Soc., 90, 113Google Scholar
  14. LEBOVITZ, N.R. 1965a, Astrophys. J., 142, 229CrossRefGoogle Scholar
  15. LEBOVITZ, N.R. 1965b, Astrophys. J., 142, 1257CrossRefGoogle Scholar
  16. LEBOVITZ, N.R. 1966, Astrophys. J., 146, 946CrossRefGoogle Scholar
  17. LEDOUX, P. 1949, Contribution á l'etude de la structure interne des étoiles et de leur stabilité, Mém. Soc. Roy. Sci. Liége Coll. in-8°, 4° sér. T IX, Ch. III, sect. 4, 5, 6Google Scholar
  18. LEDOUX, P. et SMEYERS, P. 1966, Compt. Rend. Acad. Sci. Paris, Sér.B., 262, 841Google Scholar
  19. LEDOUX, P. 1974, in P.Ledoux et al (ed.) Stellar Instability and Evolution, IAU Symposium n°59, Part VI, p. 135Google Scholar
  20. MOULTON, F.R. 1909, Astrophys. J., 29, 257CrossRefGoogle Scholar
  21. NORDLUND, A. 1976, Astron. and Astrophys., 50, 23Google Scholar
  22. OLVER, F.W.J. 1975, Phil. Trans. Roy. Soc. London A, 278, 137Google Scholar
  23. OSAKI, Y. 1975, Publ. Astron. Soc. Japan, 27, 237Google Scholar
  24. PEKERIS, C.L. 1938, Astrophys. J., 88, 189CrossRefGoogle Scholar
  25. SCHATZMAN, E. 1946, Ann. Astrophys., 9, 199Google Scholar
  26. SCUFLAIRE, R. 1974, Astron. and Astrophys., 34, 449Google Scholar
  27. SHAPLEY, H. 1914, Astrophys. J., 40, 448CrossRefGoogle Scholar
  28. SPIEGEL, E.A. 1971, Ann. Rev. Astron. Astrophys. 9, 323CrossRefGoogle Scholar
  29. SPIEGEL, E.A. 1972, Ann. Rev. Astron. Astrophys., 10, 261CrossRefGoogle Scholar
  30. TASSOUL M. and TASSOUL J.L. 1968, Ann. Astrophys., 31, 251Google Scholar
  31. THOMSON, W. 1863, Phil. Trans. Roy. Soc. London, 153, 612Google Scholar
  32. THORNE, K.S. 1966, Astrophys. J., 144, 201CrossRefGoogle Scholar

Copyright information

© Spinger-Verlag 1977

Authors and Affiliations

  • P. Ledoux
    • 1
  1. 1.Institut d'AstrophysiqueUniversité de LiégeLiège

Personalised recommendations