Semantics and proof theory of pascal procedures

  • K. R. Apt
  • J. W. de Bakker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 52)


  1. [1]
    APT, K.R. & J.W. DE BAKKER, Exercises in denotational semantics, in: Proc. 5th Symposium on Mathematical Foundations of Computer Science (A. Mazurkiewicz, ed.), pp. 1–11, Lecture Notes in Computer Science 45, Springer (1976).Google Scholar
  2. [2]
    BAKKER, J.W. DE, Least fixed points revisited, Theoretical Computer Science, 2, pp. 155–181 (1976).Google Scholar
  3. [3]
    BAKKER, J.W. DE, Correctness proofs for assignment statements, Report IW 55/76 Mathematisch Centrum (1976).Google Scholar
  4. [4]
    COOK, S.A., Axiomatic and interpretive semantics for an ALGOL fragment, Technical Report no. 79, University of Toronto (1975).Google Scholar
  5. [5]
    DONAHUE, J.E., Complementary definitions of programming language semantics, Lecture Notes in Computer Science 42, Springer (1976).Google Scholar
  6. [6]
    GORELICK, G.A., A complete axiomatic system for proving assertions about recursive and non-recursive programs, Technical Report no. 75, University of Toronto (1975).Google Scholar
  7. [7]
    HOARE, C.A.R., An axiomatic basis for programming language constructs, C.ACM 12, pp. 576–580 (1969).Google Scholar
  8. [8]
    HOARE, C.A.R., Procedures and parameters: an axiomatic approach, in: Symp. on Semantics or Algorithmic Languages, Lecture Notes in Mathematics 188 (E. Engeler, ed.) pp. 102–116, Springer (1971).Google Scholar
  9. [9]
    HOARE, C.A.R. & N. WIRTH, An axiomatic definition of the programming language PASCAL, Acta Inf. 2, pp. 335–355 (1973).Google Scholar
  10. [10]
    IGARASHI, S., R.L. LONDON & D.C. LUCKHAM, Axiomatic program verification I: A logical basis and its implementation, Acta Inf. 4, pp. 145–182 (1975).Google Scholar
  11. [11]
    LAUER, P.W., Consistent formal theories of the semantics of programming languages, Report TR 25 121, IBM Laboratory, Vienna (1971).Google Scholar
  12. [12]
    MANNA, Z. & J. VUILLEMIN, Fixpoint approach to the theory of the computation, C.ACM 15, pp. 528–536 (1972).Google Scholar
  13. [13]
    MILNE, R. & C. STRACHEY, A theory of programming language semantics, Chapman and Hall, London Wiley, New York (1976).Google Scholar
  14. [14]
    SCOTT, D. & J.W. DE BAKKER, A theory of programs, unpublished memo (1969).Google Scholar
  15. [15]
    SCOTT, D. & C. STRACHEY, Towards a mathematical semantics for computer languages, in: Proc. of the Symp. on Computers and Automata (J. Fox, ed.) pp. 19–46, Polytechnic Inst. of Brooklyn (1971).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • K. R. Apt
    • 1
  • J. W. de Bakker
    • 1
  1. 1.Mathematisch CentrumAmsterdam

Personalised recommendations