Complexite des demi — Groupes de matrices

  • G. Jacob
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 52)


Let us call measure of complexity over a class ℋ of semigroups any function β from IN into IN such that any semigroup H in ℋ generated by at most n elements has its cardinality less than β(n). If β is a measure of complexity over the class of all subgroups of a finite matrix semigroup H, then we can compute an integer T(β) which is greater than the cardinality of H. We give here equations computing effectively such an integer T(β) for some classes of matrix semigroups, or of quotients semigroups of matrix semigroups.

As a consequence we prove, using a theorem of A.I. Kostrikin, that there exist an effective decision procedure for the finiteness of matrix semigroups over skewfields, under the condition that each of its elements admits a given prime integer p as period.


Strictement Positif Quotient Semigroup Nous Donnons Nous Rappelons Dimension Finie 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T.C. BROWN, On van der Waerden's theorem on arithmetic progressions; Notices Amer. Math. Soc., 16 (1969) 245.Google Scholar
  2. 2.
    J.A. BRZOZOWSKI and I. SIMON, Characterizations of locally testable events; Discrete Math., 4 (1973) 243–271.Google Scholar
  3. 3.
    A.H. CLIFFORD and G.B. PRESTON, The algebraic theory of semigroups; Amer. Math. Soc., Providence, R.I., vol.I, 1961.Google Scholar
  4. 4.
    S. EILENBERG, Automata, languages and machines; vol. A and B, Academic Press, New-York, 1975, 1976.Google Scholar
  5. 5.
    G. JACOB, Un théorème de factorisation des produits d'endomorphismes de KN; Journal of Algebra, to appear.Google Scholar
  6. 6.
    G. JACOB, Un algorithme calculant le cardinal, fini ou infini, des demi-groupes de matrices; Theoretical Computer Science, to appear.Google Scholar
  7. 7.
    G. JACOB, La finitude des représentations linéaires des demi-groupes est décidable (sur un corps commutatif); submitted to Journal of Algebra.Google Scholar
  8. 8.
    G. JACOB, Décidabilité de la finitude des demi-groupes de matrices; 3rd G.I. Conference on Theoretical Computer Science, Darmstadt (march 1977) to appear, Lecture Notes, Springer Verlag.Google Scholar
  9. 9.
    G. JACOB, Demi-groupes de matrices localement testables, caractérisation et décidabilité; Publication no 82 du Laboratoire de Calcul de l'Université LILLE I, 59650, Villeneuve d'Ascq.Google Scholar
  10. 10.
    V.M. KOPYTOV, Solvability of the problem of occurence in finitely generated soluble groups of matrices over the field of algebraic numbers; Algebra and Logic, 7 (1968) 388–393. Translated from Russian.Google Scholar
  11. 11.
    A.I. KOSTRIKIN, The Burnside Problem; Izv. Akad. Nauk. SSSR, 23 (1959) 3–34. (english transcription: Amer. Math. Soc. Translations 36 (1964) 63–99).Google Scholar
  12. 12.
    A. MANDEL and I. SIMON, On finite semigroups of matrices; Instituto de Matematica e Estatistica, Universidade de Sao Paulo, Brasil.Google Scholar
  13. 13.
    R. McNAUGHTON and Y. ZALCSTEIN, The Burnside theorem for semigroups; Journal of Algebra, 34 (1975) 292–299.Google Scholar
  14. 14.
    D. PERRIN, Codes bipréfixes et groupes de permutations; Thèse, Paris (1975).Google Scholar
  15. 15.
    J.F. PERROT, Contribution à l'étude des monoides syntactiques de de certains groupes associée aux automates finis; Thèse, Paris (1972).Google Scholar
  16. 16.
    M.P. SCHUTZENBERGER, On finite monoids having only trivial subgroups; Inf. and Control, 8 (1965) 190–194.Google Scholar
  17. 17.
    D. SUPRUNENKO, Matrix groups; Transl. of Math. Monographies, vol. 45 (1976) Amer. Math. Soc., Providence, Rhode-Island.Google Scholar
  18. 18.
    Y. ZALCSTEIN, Finiteness conditions for matrix semigroups; Proc. Amer. Math. Soc., 38 (1973) 247–249.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • G. Jacob
    • 1
  1. 1.Université Lille I et Laboratoire d'Informatique Théorique et Programmation (C.N.R.S., laboratoire associé 248)France

Personalised recommendations