The discreet charm of the new particles

  • A. De Rújula
Part of the Lecture Notes in Physics book series (LNP, volume 56)


Invariant Mass Heavy Quark Vector Meson Quark Model Light Quark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    V. Teplitz and P. Tarjanne, Phys. Rev. Letters 11 (1963) 447.Google Scholar
  2. 2).
    Y. Hara, Phys. Rev. 134 (1964) B701.Google Scholar
  3. 3).
    J.D. Bjorken and S.L. Glashow, Phys. Lett. 11 (1964) 255.Google Scholar
  4. 4).
    D. Amati et al., Nuovo Cimento 34 (1964) 1732, Phys Lett. 11 (1964) 190; L.B. Okun' ibid 12 (1964) 250; Z. Maki and Ohnuki, Prog. Theor. Phys. 32 (1964) 144; M. Nauenberg (unpublished).Google Scholar
  5. 5).
    S.L. Glashow, H. Iliopoulos and L. Maiani, Phys. Rev. D2 (1970) 1285.Google Scholar
  6. 6).
    For a history of gauge theories, see M. Veltman in Proceedings of the Sixth International Symposium on Electron and Photon Interactions at High Energies, Bonn 1973. North-Holland Pub.Google Scholar
  7. 7).
    Mary K. Gaillard, Benjamin W. Lee and Jonathan L. Rosner, Revs. Mod. Phys. 47, (1975) 277.Google Scholar
  8. 8).
    T.W. Appelquist and H.D. Politzer, Phys. Rev. Letters 34 (1975) 43.Google Scholar
  9. 9).
    A. De Rújula and S.L. Glashow, Phys. Rev. Letters 34 (1975) 46.Google Scholar
  10. 10).
    G. Zweig, unpublished (1964); Iizuka, Supplement to Prog. Theor. Phys. 37–38 (1966) 21.Google Scholar
  11. 11).
    The standard model cannot be attributed to a single person or group. For references and a review, see for instance Steven Weinberg, Rev. Mod. Phys. 46 (1974) 255.Google Scholar
  12. 12).
    In essence, color was invented by O.W. Greenberg, Phys. Rev. Letters 13 (1964) 598. For recent developments and other references, see W. Bardeen. H. Fritzch and M. Gell-Mann, in Scale and Conformal Symmetry in Hadron Physics, edited by R. Gatto (Wiley, New York 1973).Google Scholar
  13. 13).
    S.L. Glashow, Nucl. Phys. 22 (1961) 579; S. Weinberg, Phys. Rev. Letters 19 (196) 1264; A. Salam, in Elementary Particle Theory, edited by V. Svartholm (Almquist and Wiksell, Stockholm, Sweden 1968), p, 367.Google Scholar
  14. 14).
    H.D. Politzer, Phys. Rev. Letters 30 (1973) 1346; D.J. Gross and F. Wilczek, Phys. Rev. Letters 30 (1973) 1343.Google Scholar
  15. 15).
    K. Wilson, Phys. Rev. D10 (1974) 2445; J. Kogut and L. Susskind, Phys. Rev. D9 (1974) 3501.Google Scholar
  16. 16).
    The minimal number of gluons into which a JP = 0- (1-) state can annihilate (Two[three]), follows from arguments analogous to the ones used in para-(ortho)-positrorium decay into gamma rays.Google Scholar
  17. 17).
    T.W. Appelquist and H.D. Politzer, to be published in Phys. Rev. D.Google Scholar
  18. 18).
    E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K.D. Lane and T.M. Yan, Phys. Rev. Letters 34 (1975) 369.Google Scholar
  19. 19).
    A. De Rújula, H. Georgi and S.L. Glashow, Phys. Rev. D12 (1975) 147.Google Scholar
  20. 20).
    T.W. Appelquist, A. De Rújula, S.L. Glashow and H.D. Politzer, Phys. Rev. Letters 34 (1975) 365.Google Scholar
  21. 21).
    C.G. Callan, R.L. Kingsley, S.B. Treiman, F. Wilczek and A. Zee, Phys. Rev. Letters 34 (1975) 52.Google Scholar
  22. 22).
    B. Harrington, S.Y. Park and A. Yildiz, Phys. Rev. Letters 34 (1975) 168.Google Scholar
  23. 23).
    For a discussion of gamma ray charmonium spectroscopy in models where more than one multipole contributes, see G. Karl, S. Meshkov and J.L. Rosen (unpublished).Google Scholar
  24. 24).
    W. Braunschweig et al., DESY 75/20, July 1975; B. Wiik, Proceedings of the International Symposium on Lepton and Photon Interactions at High Energies; J. Heinthe, ibid.Google Scholar
  25. 25).
    Talks by R. Schwitters and C.J. Feldman in the Proceedings quoted in Ref. 24.Google Scholar
  26. 26).
    The number of names is increasing much faster than the number of particles. A possible advantageous outcome will be the eventual reconsideration of all the nomenclature and the birth of a consistent one.Google Scholar
  27. 27).
    I am indebted to H. Schnitzer for bringing this point to my attention. The argument was developed by K. Lane.Google Scholar
  28. 28).
    For a nonrelativistic calculation, see J.M. Borenstein and R. Shankar, Phys. Rev. Letters 34 (1975) 619. For a relativistic calculation, see G. Feinberg and J. Sucher (unpublished).Google Scholar
  29. 29).
    J. Kogut and L. Susskind, Phys. Rev. Letters 34 (1975) 767 and Cornell Preprint CLNS-303 (1975). See also R. Barbieri, R. Gatto, R. Kogerler and Z. Kunszt, CERN preprint TH-2025.Google Scholar
  30. 30).
    J.E. Augustin et al., Phys. Rev. Letters 34 (1975) 764.Google Scholar
  31. 31).
    The τ0 → γγ decay rate is a measure of the number of colors. It agrees with there being three colors. S. Adler, Phys. Rev. 177 (1969) 2426.Google Scholar
  32. 32).
    M.L. Perl et al., SLAC-PUB-1626 (or LBL-4228), August 1975.Google Scholar
  33. 33).
    S.L. Adler, Phys. Rev. D10 (1974) 3714.Google Scholar
  34. 34).
    T.W. Appelquist and H. Georgi, Phys. Rev. D8 (1973) 4000; A. Zee, Phys. Rev. D8 (1973) 4038.Google Scholar
  35. 35).
    A. De Rújula and H. Georgi, Harvard Preprint.Google Scholar
  36. 36).
    In the context of the new particles, models with more than four quarks were resurrected by M. Barnett, Phys. Rev. Letters 34 (1975) 41, Phys. Rev. D11 (1975) 3246 and FERMILAB-Conf. 75/71 THY.Google Scholar
  37. 37a).
    A partial list includes A. De Rújula, H. Georgi and S. L. Glashow; Phys. Rev. Letters 35, (1975) 69, and Harvard Preprint; F.A. WilczekGoogle Scholar
  38. 37b).
    A. Zee, R.L. Kingsley and S.B. Treiman, FERMILAB-Pub-75/44-THYGoogle Scholar
  39. 37c).
    H. Fritzch, M. Gell-Mann and P. Minkowski, Cal.Tech.Preprint CALT-68-503Google Scholar
  40. 37d).
    S. Pakvasa, W.A. Simmons, and S.F. Tuan, Phys.Rev.Lett. 35, 702 (1975)Google Scholar
  41. 37e).
    G. Branco, T. Hagiwara and R.N. Mohapatra, CCN4-HEP 75/8 and C00-223B-84 (1975)Google Scholar
  42. 38).
    M. Barnett, reference 36; F. Wilczek, unpublished.Google Scholar
  43. 39).
    E. Poggio, Helen Quinn and S. Weinberg, in preparation.Google Scholar
  44. 40).
    A.M. Bogarski et al. Phys. Rev. Letters 35 (1975) 195.Google Scholar
  45. 41).
    A. De Rújula, S.L. Glashow and R. Sahnkar, Harvard Preprint.Google Scholar
  46. 42).
    H. Harari in Proceedings of the International Conference on Lepton Physics at High Energies, Stanford 1975.Google Scholar
  47. 43).
    Peculiarness (sic), is the name proposed by Amati et al., reference 4.Google Scholar
  48. 44).
    The introduction of an entirely new quantum number to describe ψ was first proposed by H.T. Nieh, T.T. Wu and C.N. Yang, Phys. Rev. Letters 34 (1975) 49.Google Scholar
  49. 45).
    L.G. Cazzoli et al., Phys. Rev. 34 1975) 1125.Google Scholar
  50. 46).
    R. Jaffe, private communication.Google Scholar
  51. 47).
    R. Barbieri, R. Gatto, R. Kogerler and Z. Kunszt, CERN preprint.Google Scholar
  52. 48).
    H.J. Schnitzer, Brandeis Preprint, J.S. Kang and H.J. Schnitzer, Brandeis University preprint and Phys. Rev. D, August 1975.Google Scholar
  53. 49).
    A recent discussion can be found in A. Pais and S.B. Treiman, Brookhaven preprint.Google Scholar
  54. 50).
    J.C. Pati and A. Salam, these proceedings.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • A. De Rújula
    • 1
  1. 1.The Physics LaboratoriesHarvard UniversityCambridge

Personalised recommendations