Evolved H II regions

  • E. Churchwell
Part IV: Evolved H II regions and 0B-stars
Part of the Lecture Notes in Physics book series (LNP, volume 42)


A probable evolutionary sequence of H II regions based on six distinct types of observed objects is suggested. Two examples which may deviate from this idealized sequence, are discussed. Even though a sizemean density relation for H II regions can be used as a rough indication of whether a nebula is very young or evolved, it is argued that such a relation is not likely to be useful for the quantitative assignment of ages to H II regions. Evolved H II regions appear to fit into one of four structural types: rings, core-halos, smooth structures, and irregular or filamentary structures. Examples of each type are given with their derived physical parameters. The energy balance in these nebulae is considered. The mass of ionized gas in evolved H II regions is in general too large to trace the nebula back to single compact H II regions. Finally, the morphological type of the Galaxy is considered from its H II region content.


Star Cluster Luminosity Function Stellar Cluster Luminosity Class Radio Wavelength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baars, J.W.M., Wendker, H.J. 1973, I.A.U. Symposium No. 60, Maroochydore, AustraliaGoogle Scholar
  2. Blaauw, A. 1964, Ann. Rev. Astr. & Astrophys. 2, 213Google Scholar
  3. Bottinelli, L., Gouguenheim, L. 1964, Ann. Rev. Astr. & Astrophys. 27, 685Google Scholar
  4. Caswell, J.L., Goss, W.M. 1974, Astr. & Astrophys., 32, 209Google Scholar
  5. Churchwell, E. 1974, paper presented at the 2nd European Regional Meeting in Astronomy, Trieste, ItalyGoogle Scholar
  6. Churchwell, E., Felli, M. 1970, Astr. & Astrophys. 4, 309Google Scholar
  7. Churchwell, E., Walmsley, C.M. 1973, Astr. & Astrophys., 23, 117Google Scholar
  8. Davies, R.D., Tovmassian, H.M. 1963, M.N.R.A.S. 127, 61Google Scholar
  9. Feast, M.W. 1961, M.N.R.A.S., 122, 1Google Scholar
  10. Georgelin, Y.P. 1971, Astr. & Astrophys. 11, 414Google Scholar
  11. Georgelin, Y.M., Georgelin, Y.P., Roux, S. 1973, Astr. & Astrophys. 25, 337Google Scholar
  12. Huchtmeier, W.K., Churchwell, E. 1974, Astr. & Astrophys. 35, 417Google Scholar
  13. Mathews, W.G., O'Dell, C.R. 1969, Ann. Rev. Astr. & Astrophys. 7, 67Google Scholar
  14. McGee, R.X., Brooks, J.W., Batchelor, R.A. 1972, Austr. J. Phys. 25, 581Google Scholar
  15. Menon, T.K. 1962, Ap. J. 135, 394Google Scholar
  16. Mezger, P.G. 1973, in “Interstellar Matter”, Proc. 2nd Adv. Course, Swiss Soc. of Astr. and Astrophys., Publ. Geneva Observatory, GenevaGoogle Scholar
  17. Mezger, P.G., Smith, L.F., Churchwell, E. 1974, Astr. & Astrophys. 32 269Google Scholar
  18. Osterbrock, D.E., Stockhausen, R.E. 1960, Ap. J. 131, 310Google Scholar
  19. Salpeter, E.E. 1955, Ap. J. 121, 161Google Scholar
  20. Sandage, A., Tammann, G.A. 1971, Ap. J. 190, 525Google Scholar
  21. Sersic, J.L. 1960, Zeit. f. Astrophys., 50, 168Google Scholar
  22. Shapley, H., Paraskevopoulos, J.S. 1937, AP. J. 86, 340Google Scholar
  23. Thaddeus, P., Wilson, R.W., Kutner, M., Penzias, A.A., Jefferts,K.B. 1971, Ap. J. 168, L59Google Scholar
  24. Torres-Peimbert, S., Lazcano-Araujo, A., Peimbert, M. 1974, Ap. J. 191, 401Google Scholar
  25. Walmsley, C.M., Churchwell, E., Kazès, I., Le Squéren, A.M. 1975, Astr. & Astrophys., in pressGoogle Scholar
  26. Wendker, H.J. 1968, Zeit. f. Astrophys. 68, 368Google Scholar
  27. Wendker, H.J. 1970, Astr. & Astrophys. 4, 378Google Scholar
  28. Wynn-Williams, C.G., Becklin, E.E., Neugebauer, G. 1972, M.N.R.A.S. 160, 1Google Scholar
  29. Zuckerman, B. 1973, Ap. J. 183, 863Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • E. Churchwell
    • 1
  1. 1.Max-Planck-Institut für RadioastronomieBonnGermany

Personalised recommendations