Automata and categories — Input processes

  • Václav Koubek
  • Jan Reiterman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 32)


Input Process Free Algebra Condition Chain Continuum Hypothesis Torsion Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adámek, J., Free algebras and automata realizations in the language of categories, Comment. Math. Univ. Carolinae 15 (1974), 582–602.Google Scholar
  2. 2.
    Adámek, J., Automaty v teorii kategorií — thesis 1975Google Scholar
  3. 3.
    Adámek, J., Automata and categories: Finitness contra minimality, this volume, pp. 160–166.Google Scholar
  4. 4.
    Arbib, M.A. and Manes, E.G, Machines in a category: an expository introduction. SIAM Review 16 (1974), 163–192.CrossRefGoogle Scholar
  5. 5.
    Barr, M., Coequalizers and free triples, Math. Z. 116 (1970), 307–322.CrossRefGoogle Scholar
  6. 6.
    Kůrková-Pohlová, V. and Koubek, V., When a generalized algebraic category is monadic, Comment. Math. Univ. Carolinae 15 (1974), 577–587.Google Scholar
  7. 7.
    Trnková, V., Adámek, J. Koubek, V. and Reiterman, J., Free algebras, input process and free monads, Comment. Math. Univ. Carolinae 16 (1975), 339–352.Google Scholar
  8. 8.
    Trnková, V., Automata and categories, this volume, pp. 138–152.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • Václav Koubek
    • 1
  • Jan Reiterman
    • 2
  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPragueCzechoslovakia
  2. 2.Faculty of Nuclear and Technical EngineeringTechnical UniversityPragueCzechoslovakia

Personalised recommendations