Input Symbol Reduction Problem Minimal Realization Terminal Object Closed Category 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adámek, J., Free algebras and automata realizations in the language of categories. Comment. Math.Univ.Carolinae 15 (1974), 589–602.Google Scholar
  2. 2.
    Adámek, J., Realization theory for automata in categories. To appear.Google Scholar
  3. 3.
    Adámek, J., Automata and categories: Finitness contra minimality. This volume, pp. 160–166.Google Scholar
  4. 4.
    Anderson, B.D.O., Arbib, M.A. and Manes, E.G., Foundations of system theory: finitary and infinitary conditions. Computer and Information Science, University of Massachusetts at Amherst.Google Scholar
  5. 5.
    Arbib, M.A.and Manes, E.G., A categorist's view of automata and systems. Category Theory applied to Computation and Control, Proceedings of the First International Symposium 1974, 62–76.Google Scholar
  6. 6.
    Arbib, M.A. and Manes, E.G., Machines in a Category: An expository introduction. SIAM Review 16 (1974), 163–192.CrossRefGoogle Scholar
  7. 7.
    Arbib, M.A. and Manes, E.G., Foundations of System Theory: Decomposable Systems. Automatica 10(1974), 285–302.CrossRefGoogle Scholar
  8. 8.
    Čech, E., Topological Spaces. Academia, Prague 1966.Google Scholar
  9. 9.
    Ehrig, H., Universal theory of automata. Teubner Studienbücher 1974.Google Scholar
  10. 10.
    Ehrig, H., Kiermeier, K.D., Kreowski, H.I. and Kühnel, W., Systematisierung der Automatentheorie, Seminarbericht, Technische Universität Berlin, Fachbereich Kybernetik, 1973.Google Scholar
  11. 11.
    Goguen, I.A., Minimal realization of machines in closed categories. Bull. Amer. Math. Soc. 78 (1972), 777–784.Google Scholar
  12. 12.
    Goguen, I.A., Realization is Universal. Math. Syst. Theory 6 (1973), 359–374.CrossRefGoogle Scholar
  13. 13.
    Herrlich, H. and Strecker, E.G., Category Theory, Allyn and Bacon, Boston 1973.Google Scholar
  14. 14.
    Hušek M., S-categories. Comment. Math. Univ. Carolinae 5(1964), 37–46.Google Scholar
  15. 15.
    Koubek, V., Setfunctors I. and II. Comment. Math. Univ. Carolinae 12(1971), 777–783 and 14(1973), 47–59.Google Scholar
  16. 16.
    Koubek, V. and Reiterman, J., Automata and Categories — Input processes. This volume, pp. 280–286.Google Scholar
  17. 17.
    Kůrková-Pohlová, V. and Koubek, V., When a generalized algebraic category is monadic. Comment. Math. Univ. Carolinae 15(1974), 577–602.Google Scholar
  18. 18.
    MacLane, S., Categories for the working mathematician. Springer New York-Heidelberg-Berlin 1971.Google Scholar
  19. 19.
    Manes, E.G., Algebraic Theories. A draft of a book.Google Scholar
  20. 20.
    Trnková, V., On a descriptive classification of set functors I. and II. Comment. Math. Univ. Carolinae 12(1971), 143–174 and 345–357.Google Scholar
  21. 21.
    Trnková, V., On minimal realizations of behavior maps in categorial automata theory. Comment. Math. Univ. Carolinae 15(1974), 555–566.Google Scholar
  22. 22.
    Trnková, V., Minimal realizations for finite sets in categorial automata theory. Comment. Math. Univ. Carolinae 16(1975), 21–35.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • Věra Trnková
    • 1
  1. 1.Department of MathematicsCharles UniversityPraha 8Czechoslovakia

Personalised recommendations