Cellular automata with additive local transition

  • Wolfgang Merzenich
Submitted Abstract
Part of the Lecture Notes in Computer Science book series (LNCS, volume 25)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    v. Neumann, Theory of Self-Reproducing Automata, Urbana 1966Google Scholar
  2. 2).
    Burks, (ed.), Essays on Cellular Automata, Urbana 1970Google Scholar
  3. 3).
    Codd, Cellular Automata, New York 1968Google Scholar
  4. 4).
    Amoroso-Lieblein-Yamada, A Unifying Framework for the Theory of Iterative Arrays of Machines, ACM Symp., Theory of Comp., Conference Record Marina del Rey, Calif. May 5–7, 1969Google Scholar
  5. 5).
    Amoroso-Yamada, Tessalation Automata, Inf. and Contr. 14, 1969Google Scholar
  6. 6).
    Moore, Machine Models of Self-Reproduction, Proc. of Symp. in Appl. Math. vol. 14, AMS 1962Google Scholar
  7. 7).
    Smith III, Cellular Automata Theory, Stanford Univers., Techn. Rep.NO. 2, Dec. 1969Google Scholar
  8. 8).
    Richardson, Tessalations with Local Transformations, J. of Comp. and System Sciences 5, 1972Google Scholar
  9. 9).
    Amoroso-Cooper, Tessalation Structures for Reproduction of Arbitrary Patterns, J. of Comp. and System Sciences 5, 1971Google Scholar
  10. 10).
    Ostrand, Pattern Reproduction in Tessalation Automata of Arbitrary Dimension, J. of Comp. and System Sciences 5, 1971Google Scholar
  11. 11).
    Grätzer, Universal Algebra, Van Nostrand, Princeton N. J. 1968Google Scholar
  12. 12).
    Mitchell, Theory of Categories, New York — London 1965Google Scholar
  13. 13).
    Lambek, Lectures on Rings and Modules, Blaisdell Publ. Comp. Waltham Mass. 1966Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • Wolfgang Merzenich
    • 1
  1. 1.InformatikUniversität Dortmund46 Dortmund-HombruchGermany

Personalised recommendations