Addressed machines and duality

  • E. S. Bainbridge
Submitted Abstract
Part of the Lecture Notes in Computer Science book series (LNCS, volume 25)


Sequential Machine Left Action Forgetful Functor Minimal Realization Input Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ARBIB, M.A. and ZEIGER, H.P. "An Automata-Theoretic Approach to Linear Systems" IFAC Symposium, Sydney Australia, August 1968.Google Scholar
  2. [2]
    BAINBRIDGE, E.S. "A Unified Minimal Realization Theory, with Duality". Dissertation, Department of Computer & Communication Sciences, University of Michigan, 1972.Google Scholar
  3. [3]
    DUBUC, E.J. Kan Extensions in Enriched Category Theory, Lecture Notes in Mathematics #145, Springer-Verlag, New York 1970.zbMATHGoogle Scholar
  4. [4]
    GIVE'ON, Y. and ARBIB, M.A. "Algebra Automata II: The Categorical Framework for Dynamic Analysis" Information and Control, 12, pp. 346–310, 1968.CrossRefMathSciNetGoogle Scholar
  5. [5]
    GRILLET, P.A. "Regular Categories", in Exact Categories and Categories of Sheaves, Lecture Notes in Mathematics #236, Springer-Verlag, New York 1971.Google Scholar
  6. [6]
    KALMAN, R.E. "Algebraic Theory of Linear Systems", in Topics in Mathematical System Theory. edited by R.E. Kalman, M.A. Arbib, and P.L. Falb. McGraw-Hill, 1969.Google Scholar
  7. [7]
    LAWVERE, F.W. "Functorial Semantics of Algebra Theories", Proc. Nat. Acad. Sci., U.S.A., 50, pp. 869–872, 1963.CrossRefMathSciNetGoogle Scholar
  8. [8]
    MACLANE, S. Categories for the Working Mathematician, Springer-Verlag, New York, 1971.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • E. S. Bainbridge
    • 1
  1. 1.MathematicsUniversity of OttawaOttawaCanada

Personalised recommendations