A Categorist's view of automata and systems

  • M. A. Arbib
  • E. G. Manes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 25)


Category Theory Input Process Sequential Machine Machine Theory Automaton Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Alagić, Natural state transformations, Department of Computer and Information Science Technical Report 73B-2, Univ. of Mass., 1973.Google Scholar
  2. 2.
    — Algebraic aspects of ALGOL 68, Computer and Information Science Technical Report 73B-5, Univ. of Mass., 1973.Google Scholar
  3. 3.
    — Categorical theory of tree transformations, this volume.Google Scholar
  4. 4.
    H. Appelgate, Acyclic models and resolvent functors, dissertation, Columbia University, 1965.Google Scholar
  5. 5.
    B. D. O. Anderson, M. A. Arbib and E. G. Manes, Finitary and infinitary conditions in categorical realization theory, to appear.Google Scholar
  6. 6.
    M. A. Arbib, Theories of Abstract Automata, Prentice-Hall, 1969.Google Scholar
  7. 7.
    M. A. Arbib and E. G. Manes, Machines in a category: an expository introduction, Siam Review, to appear.Google Scholar
  8. 8.
    — Adjoint machines, state-behavior machines, and duality, J. Pure Appl. Alg., to appear.Google Scholar
  9. 9.
    — Fuzzy morphisms in automata theory, this volume.Google Scholar
  10. 10.
    — Time-varying systems, this volume.Google Scholar
  11. 11.
    — The Categorical Imperative: Arrows, Structures, and Functors, Academic Press, 1974.Google Scholar
  12. 12.
    E. S. Bainbridge, A unified minimal realization theory, with duality for machines in a hyperdoctrine, dissertation, Univ. of Mich., 1972.Google Scholar
  13. 13.
    — Addressed machines and duality, this volume.Google Scholar
  14. 14.
    M. Barr, Coequalizers and free triples, Math. Zeit. 116, 1970, 307–322.CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    J. Beck, Triples, algebras and cohomology, dissertation, Columbia University, 1967; available from University Microfilms, Ann Arbor, Michigan.Google Scholar
  16. 16.
    D. Benson, An abstract machine theory for formal language parsers, this volume.Google Scholar
  17. 17.
    R. W. Brockett and A. S. Willsky, Finite-state homomorphic sequential machines, IEEE Trans. Aut. Cont. AC-17, 1973, 483–490.MathSciNetGoogle Scholar
  18. 18.
    — Some structural properties of automata defined on groups, this volume.Google Scholar
  19. 19.
    L. Budach, Automata in additive categories with applications to stochastic linear automata, this volume.Google Scholar
  20. 20.
    E. Burroni, Algèbres relatives à une loi distributive, Comp. R. Acad. Sc. Paris, t. 276 (5 fév. 1973), Ser. A, 443–446.Google Scholar
  21. 21.
    R. W. Burstall and J. W. Thatcher, Algebraic theory of recursive program schemes, this volume.Google Scholar
  22. 22.
    N. Chomsky, On certain formal properties of grammars, Inf. Cont. 2, 1959, 136–167.Google Scholar
  23. 23.
    P. M. Cohn, Universal Algebra, Harper and Row, 1965.Google Scholar
  24. 24.
    E. J. Dubuc, Kan Extensions in Enriched Category Theory, Lecture Notes in Mathematics 145, Springer-Verlag, 1970.Google Scholar
  25. 25.
    B. Eckmann ed., Seminar on Triples and Categorical Homology Theory, Lecture Notes in Mathematics 80, Springer-Verlag, 1969.Google Scholar
  26. 26.
    H. Ehrig; K. D. Kiermeier; H.-J. Kreowski and W. Kühnel, Systematisierung der Automatentheorie, Seminarbericht, Technische Universität Berlin, Fachbereich Kybernetik, 1973.Google Scholar
  27. 27.
    H. Ehrig and H.-J. Kreowski, Power and initial automata in pseudoclosed categories, this volume.Google Scholar
  28. 28.
    E. Engeler ed., Symposium on Semantics of Algorithmic Languages, Lecture Notes in Mathematics 188, Springer-Verlag, 1971.Google Scholar
  29. 29.
    S. Ginsburg, An Introduction to Mathematical Machine Theory, Addison-Wesley, 1962.Google Scholar
  30. 30.
    J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18, 1967, 145–174.CrossRefMathSciNetzbMATHGoogle Scholar
  31. 31.
    — On homomorphisms, simulations, correctness, subroutines, and termination for programs and program schemes, Proceedings of the 13th IEEE Conference on Switching and Automata Theory, 1972, 52–60.Google Scholar
  32. 32.
    — Minimal realization of machines in closed categories, Bull. Amer. Math. Soc. 78, 1972, 777–783.MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    — Axioms, extensions and applications for fuzzy sets: languages and the representation of concepts, to appear.Google Scholar
  34. 34.
    — Some comments on applying mathematical system theory, to appear.Google Scholar
  35. 35.
    J. A. Goguen; J. W. Thatcher; E. G. Wagner and J. B. Wright, A junction between computer science and category theory, I: basic concepts and examples (part 1), IBM Research Report RC 4526, T. J. Watson Research Center, 1973.Google Scholar
  36. 36.
    G. Grätzer, Universal Algebra, Van Nostrand, 1967.Google Scholar
  37. 37.
    R. E. Kalman; P. L. Falb and M. A. Arbib, Topics in Mathematical System Theory, McGraw-Hill, 1969.Google Scholar
  38. 38.
    A. Kock, Monads on symmetric monoidal closed categories, Arch. Math. XXI, 1970, 1–10.CrossRefMathSciNetGoogle Scholar
  39. 39.
    J. Lambek, Deductive systems and categories, Math. Sys. Th. 2, 1968, 287–318.CrossRefMathSciNetzbMATHGoogle Scholar
  40. 40.
    F. W. Lawvere, Functorial semantics of algebraic theories, dissertation, Columbia University, 1963.Google Scholar
  41. 41.
    F. E. J. Linton, Triples for closed categories, Seminar in Category Theory, notes by D. Taylor, NSF summer institute at Bowdoin College, 1969.Google Scholar
  42. 42.
    S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, 1972.Google Scholar
  43. 43.
    E. G. Manes, Algebraic Theories, Springer-Verlag, to appear.Google Scholar
  44. 44.
    J. Meseguer and I. Sols, Automata in semimodule categories, this volume.Google Scholar
  45. 45.
    L. Padulo and M. A. Arbib, System Theory: a Unified Approach to Discrete and Continuous Systems, W. B. Saunders, 1974.Google Scholar
  46. 46.
    A. Paz, Introduction to Probabilistic Automata, Academic Press, 1971.Google Scholar
  47. 47.
    R. S. Pierce, Introduction to the Theory of Abstract Algebras, Holt, Rinehart and Winston, 1968.Google Scholar
  48. 48.
    J. Rissanen and B. F. Wyman, Duality of input/output maps, this volume.Google Scholar
  49. 49.
    D. Scott, The lattice of flow diagrams, Symposium on Semantics of Algorithmic Languages, Lecture Notes in Mathematics 188, Springer-Verlag, 1971.Google Scholar
  50. 50.
    J. W. Thatcher, Generalized2 sequential machine maps, J. Comp. Syst. Sci. 4, 1970, 339–367.MathSciNetzbMATHGoogle Scholar
  51. 51.
    M. Wand, An unusual application of program-proving, Proceedings of the Fifth ACM Symposium on the Theory of Computing, 1973, 59–66.Google Scholar
  52. 52.
    — An algebraic formulation of the Chomsky hierarchy, this volume.Google Scholar
  53. 53.
    — On the recursive specification of data types, this volume.Google Scholar
  54. 54.
    — On the behavioral description of data structures, to appear.Google Scholar
  55. 55.
    B. F. Wyman, Linear systems over rings of operators, this volume.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • M. A. Arbib
    • 1
  • E. G. Manes
    • 2
  1. 1.Computer and Information ScienceUniversity of MassachusettsAmherstUSA
  2. 2.MathematicsUniversity of MassachusettsAmherstUSA

Personalised recommendations