Advertisement

Piezoelectricity and related properties of polymer films

  • R. Hayakawa
  • Y. Wada
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 11)

Keywords

Polymer Film Dielectric Relaxation Spontaneous Polarization Piezoelectric Effect Polarization Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

VIII. References

  1. 1.
    Allison, F. E.: Shock-induced polarization in plastics. I. Theory. J. Appl. Phys. 36, 2111 (1965).Google Scholar
  2. 2.
    Anderson, J. C., Eriksson, C.: Electrical properties of wet collagen. Nature 218, 166 (1968).Google Scholar
  3. 3.
    — —: Piezoelectric properties of dry and wet bone. Nature 227, 491 (1970).Google Scholar
  4. 4.
    Ando, Y., Fukada, E.: Piezoelectric dispersion in DNA films. Rep. Progr. Polymer Phys. Japan 14, 479 (1971).Google Scholar
  5. 5.
    Athenstaedt, H.: Permanent longitudinal electric polarization and pyroelectric behavior of collagenous structures and nervous tissue in man and other vertebrates. Nature 228, 830 (1970).Google Scholar
  6. 6.
    Bassett, C. A. L., Pawluk, R. J., Becker, R. O.: Effects of electric currents on bone in vivo. Nature 204, 652 (1964).Google Scholar
  7. 7.
    —, Electrical effects in bone. Sci. Am. 213, 18 (Oct. 1965).Google Scholar
  8. 8.
    Bazhenov, V. A.: Piezoelectric properties of wood. New York, Consultant Bureau Enterprises, Inc., 1961.Google Scholar
  9. 9.
    Bergman, J. G., Jr., McFee, J. H., Crane, G. R.: Pyroelectricity and optical second harmonic generation in polyvinylidene fluoride films. Appl. Phys. Letters 18, 203 (1971).Google Scholar
  10. 10.
    Brain, K. R.: Investigation of piezoelectric effects with dielectrics. Proc. Phys. Soc. (London) 36, 81 (1924).Google Scholar
  11. 11.
    Cady, W. G.: Piezoelectricity, New York, Dover Publications, Inc., 1964.Google Scholar
  12. 12.
    Cohen, J., Edelman, S.: Direct piezoelectric effect in polyvinyl chloride films. J. Appl. Phys. 42, 893 (1971).Google Scholar
  13. 13.
    — — Piezoelectric effect in oriented polyvinyl chloride and polyvinyl fluoride. J. Appl. Phys. 42, 3072 (1971).Google Scholar
  14. 14.
    Daane, J. H., Barker, R. E., Jr.: Multiple glass transitions in cellulose 2.5 acetate. Polymer Letters 2, 343 (1964).Google Scholar
  15. 15.
    Date, M., Takashita, S., Fukada, E.: Temperature variation of piezoelectric moduli in oriented poly(γ-methyl L-glutamate). J. Polymer Sci. A-2, 8, 61 (1970).Google Scholar
  16. 16.
    De Groot, S. R., Mazur, P.: Non-equilibrium thermodynamics. Amsterdam: North Holland Pub. Co. 1962.Google Scholar
  17. 17.
    Duchesne, J., Depireux, J., Bertinchamps, A., Cornet, N., van der Kaa, J. M.: Thermal and electrical properties of nucleic acids and proteins. Nature 188, 405 (1960).Google Scholar
  18. 18.
    Edelman, S., Grisham, L. R., Roth, S. C., Cohen, J.: Improved piezoelectric effect in polymers. J. Acoust. Soc. Am. 48, 1040 (1970).Google Scholar
  19. 19.
    Fukada, E.: Piezoelectricity of wood. J. Phys. Soc. Japan 10, 149 (1956).Google Scholar
  20. 20.
    — On the piezoelectric effect of silk fibers. J. Phys. Soc. Japan 11, 1301 (1956).Google Scholar
  21. 21.
    — Yasuda, I.: On the piezoelectric effect of bone. J. Phys. Soc. Japan 12, 1158 (1957).Google Scholar
  22. 22.
    — — Kohara, J., Okamoto, H.: Dynamic Young's modulus and piezoelectric constant of old timbers. Oyo Buturi 26, 25 (1957).Google Scholar
  23. 23.
    — — Piezoelectric effects in collagen. Japan. J. Appl. Phys. 3, 117 (1964).Google Scholar
  24. 24.
    — Date, M., Hirai, N.: Piezoelectric effect in poly-γ-methyl L-glutamate. Nature 211, 1079 (1966).Google Scholar
  25. 25.
    — (1): Mechanical deformation and electrical polarization in biological substances. Biorheology 5, 199 (1968).Google Scholar
  26. 26.
    — (2): Piezoelectricity in polymers and biological materials. Ultrasonics (Oct. 1968) p. 229.Google Scholar
  27. 27.
    — (3): Piezoelectricity as a fundamental property of wood. Wood Sci. Tech. 2, 229 (1968).Google Scholar
  28. 28.
    — Date, M.: Effect of temperature on piezoelectricity in wood. J. Polymer Sci. C23, 509 (1968).Google Scholar
  29. 29.
    — — Emura, T.: Temperature variation of complex piezoelectric modulus in cellulose acetate. J. Soc. Mat. Sci. Japan 17, 335 (1968).Google Scholar
  30. 30.
    — Tamura, M., Yamamoto, I.: Polypeptides piezoelectric transducer. Rep. 6th Int. Congr. Acoustics D-69, Aug. 1968, Tokyo.Google Scholar
  31. 31.
    — Date, M., Hara, K.: Temperature dispersion of complex piezoelectric modulus of wood. Japan. J. Appl. Phys. 8, 151 (1969).Google Scholar
  32. 32.
    — Hara, K.: Piezoelectric effect in blood vessel walls. J. Phys. Soc. Japan 26, 777 (1969).Google Scholar
  33. 33.
    — Takashita, S.: Piezoelectric effect in polarized poly(vinylidene fluoride). Japan. J. Appl. Phys. 8, 960 (1969).Google Scholar
  34. 34.
    — Piezoelectric dispersion in oriented polymers. Proc. 5th Int. Congr. Rheology, Vol. 3, p. 285. Tokyo: University of Tokyo Press, Baltimore: University Park Press 1970.Google Scholar
  35. 35.
    Fukada, E., Date, M.: Mechanical and electrical models for piezoelectric dispersions in oriented polymers. Polymer J. 1, 410 (1970).Google Scholar
  36. 36.
    —, Ueda, H.: Piezoelectric effect in muscle. Japan. J. Appl. Phys. 9, 844 (1970).Google Scholar
  37. 37.
    —, Sakurai, T.: Piezoelectricity in polarized poly(vinylidene fluoride) films. Polymer J. 2, 676 (1971).Google Scholar
  38. 38.
    — Takashita, S.: Piezoelectric constant in oriented β-form polypeptides. Japan. J. Appl. Phys. 10, 722 (1971).Google Scholar
  39. 39.
    Furukawa, T., Uematsu, Y., Asakawa, K., Wada, Y.: Piezoelectricity, pyroelectricity, and thermoelectricity of polymer films. J. Appl. Polymer Sci. 12, 2675 (1968).Google Scholar
  40. 40.
    — Kukada, E.: Piezoelectric effect and its temperature variation in optically active polypropylene oxide. Nature 221, 1235 (1969).Google Scholar
  41. 41.
    — Date, M., Fukada, E.: An apparatus for measuring piezoelectric strain and stress constants in polymers. Rep. Progr. Polymer Phys. Japan 13, 375 (1970).Google Scholar
  42. 42.
    — — — The influence of temperature and frequency on piezoelectric properties of synthetic polypeptides. Rep. Progr. Polymer Phys. Japan 14, 473 (1971).Google Scholar
  43. 43.
    Gerson, R., Rohrbaugh, J. H.: Experiments on the carnauba wax electret. J. Chem. Phys. 23, 2381 (1955).Google Scholar
  44. 44.
    Greaves, R. W., Lamb, D. R.: Observation of the inverse piezoelectric effect in polyethylene while under a polarizing field. J. Mat. Sci. 6, 74 (1971).Google Scholar
  45. 45.
    Harris, P.: Mechanism for the shock polarization of dielectrics. J. Appl. Phys. 36, 739 (1965).Google Scholar
  46. 46.
    Hasegawa, R., Takahashi, Y., Kobayashi, M., Chatani, Y., Tadokoro, H.: Crystallization of polymers under high pressure — High pressure modifications of poly(vinylidene chloride) and others. 19th Polymer Symposium, Japan (Oct. 1970) Kyoto.Google Scholar
  47. 47.
    Hauver, G. E.: Shock-induced polarization in plastics. II. Experimental study of plexiglas and polystyrene. J. Appl. Phys. 36, 2113 (1965).Google Scholar
  48. 48.
    Hayakawa, R., Wada, Y. (1): A general description of piezoelectricity of polymer film. Rep. Progr. Polymer Phys. Japan 14, 467 (1971).Google Scholar
  49. 49.
    — — (2): Electrostriction effect of polymers. 20th Polymer Symposium, Japan (Nov. 1971) Tokyo.Google Scholar
  50. 50.
    Hikichi, K.: Molecular motions of polymers having helical conformation. II. J. Phys. Soc. Japan 19, 2169 (1964).Google Scholar
  51. 51.
    — Saito, K., Kaneko, M., Furuichi, J.: Dielectric dispersion of poly-γ-benzyl L-glutamate. J. Phys. Soc. Japan 19, 577 (1964).Google Scholar
  52. 52.
    Holland, R.: Representation of dielectric, elastic, and piezoelectric losses by complex coefficients. IEEE Trans. Sonics and Ultrasonics, SU-14, No. 1, 18 (1967).Google Scholar
  53. 53.
    Kasai, K.: Piezoelectricity in helical polymer chains. J. Phys. Soc. Japan 27, 1268 (1969).Google Scholar
  54. 54.
    Kawai, H. (1): A new type of piezoelectricity in elongated polymer films. Oyo Buturi 38, 1133 (1969).Google Scholar
  55. 55.
    — (2): The piezoelectricity of poly(vinylidene fluoride). Japan. J. Appl. Phys. 8, 975 (1969).Google Scholar
  56. 56.
    — (1): Bending piezoelectricity of elongated polymer films. Oyo Buturi 39, 869 (1970).Google Scholar
  57. 57.
    — (2): Electrostriction and piezoelectricity of elongated polymer films. Oyo Buturi 39, 413 (1970).Google Scholar
  58. 58.
    Kern, E. L., Skinner, S. M.: Electromechanical hysteresis measurements: A new tool for investigation of the properties of plastics. J. Appl. Polymer Sci. 6, 404 (1962).Google Scholar
  59. 59.
    Kitayama, T., Nakayama, H.: Piezoelectricity of composite systems of polymer and powdered ferroelectric ceramics. 18th Meeting on Appl. Phys. Japan (Apr. 1971) Tokyo.Google Scholar
  60. 60.
    Kocharyan, N. M., Pachadzhyan, Kh. B.: Study of the piezoelectric effect in poly(methyl methacrylate). Dokl. Akad. Nauk. Arm. SSR 36, 277 (1963). Chem. Abstr. 59, 154395 (1963).Google Scholar
  61. 61.
    — — Mkhitaryan, Sh.A.: Piezoelectric effect in poly(vinyl chloride). Izv. Akad. Nauk. Arm. SSR 1, 217 (1966). Chem. Abstr. 66, 38 385e (1967).Google Scholar
  62. 62.
    Kogan, Sh. M.: Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Soviet Phys.-Solid State 5, 2069 (1964).Google Scholar
  63. 63.
    Konaga, T., Fukada, E.: Piezoelectric effect in oriented films of poly-γ-benzyl L-glutamate. Rep. Progr. Polymer Phys. Japan 13, 379 (1970).Google Scholar
  64. 64.
    — — The piezoelectric dispersion in water-soluble polypeptides. Rep. Progr. Polymer Phys. Japan 14, 475 (1971).Google Scholar
  65. 65.
    Landau, L. D., Lifshitz, E. M.: Statistical physics. Reading, Mass.: Addison-Wesley Pub. Co. 1958.Google Scholar
  66. 66.
    Lando, J. B., Olf, H. G., Peterlin, A.: Nuclear magnetic resonance and X-ray determination of the structure of poly(vinylidene fluoride). J. Polymer Sci. A-1, 4, 941 (1966).Google Scholar
  67. 67.
    Lang, S. B.: Pyroelectric effect in bone and tendon. Nature 212, 704 (1966).Google Scholar
  68. 68.
    — Thermal expansion coefficients and the primary and secondary pyroelectric coefficients of animal bone. Nature 224, 798 (1969).Google Scholar
  69. 69.
    Lavine, L. S., Lustrin, I., Shamos, M. H.: Experimental model for studying the effect of electric current on bone in vivo. Nature 224, 1112 (1969).Google Scholar
  70. 70.
    Levine, S. N.: Inverse piezoelectric effect in polymers. J. Appl. Polymer Sci. 9, 3351 (1965).Google Scholar
  71. 71.
    Martin, A. J. P.: Tribo-electricity in wool and hair. Proc. Phys. Soc. 53, 186 (1941).Google Scholar
  72. 72.
    Mason, W. P.: Piezoelectric crystals and their application to ultrasonics. New York: D. Van Nostrand Co. Inc. 1950.Google Scholar
  73. 73.
    Meyer, R. B.: Piezoelectric effects in liquid crystals. Phys. Rev. Letters 22, 918 (1969).Google Scholar
  74. 74.
    Miller, M. L.: Persistent polarization in polymers. I and II. J. Polymer Sci. A-2, 4, 685, 697 (1966).Google Scholar
  75. 75.
    Morris, R. W., Kittleman, L. R.: Piezoelectric property of otoliths. Science 158, 368 (1967).Google Scholar
  76. 76.
    Murayama, N.: Piezoelectric and pyroelectric effects of polymer electrets. Microsymposium on Electrical Properties of Polymers, Tokyo (Jan. 1972).Google Scholar
  77. 77.
    Nakamura, K., Wada, Y.: Piezoelectricity, pyroelectricity, and the electrostriction constant of poly(vinylidene fluoride). J. Polymer Sci. A-2, 9, 161 (1971).Google Scholar
  78. 78.
    Oshiki, M., Fukada, E.: The inverse piezoelectricity and electrostriction in elongated and polarized films of poly(vinylidene fluoride). Rep. Progr. Polymer Phys. Japan 14, 471 (1971).Google Scholar
  79. 79.
    — — Private communication. (1972).Google Scholar
  80. 80.
    Peterlin, A., Elwell, J.: Dielectric constant of rolled poly(vinylidene fluoride). J. Mat. Sci. 2, 1 (1967).Google Scholar
  81. 81.
    Polonsky, J., Douzou, P., Sadron, C.: tMise en évidence de propriétés ferroélectriques dans l'acide désoxyribonucléique. C. R. Acad. Sci. Paris 250, 3414 (1960).Google Scholar
  82. 82.
    Rez, I. S.: Piezoelectric polymers. Soviet Physics-Crystallography 6, 521 (1962).Google Scholar
  83. 83.
    Saba, R. G., Sauer, J. A., Woodward, A. E.: Dynamic shear behavior of poly (γ-benzyl L-glutamate), poly(D, L-propylene oxide), and poly(ethyl vinyl ether). J. Polymer Sci. A1, 1483 (1963).Google Scholar
  84. 84.
    Sasabe, H., Saito, S.: Dielectric relaxations of polyvinylidene fluoride as a function of temperature and pressure. Rep. Progr. Polymer Phys. Japan 11, 379 (1968).Google Scholar
  85. 85.
    — — Asahina, M., Kakutani, H.: Dielectric relaxations in poly(vinylidene fluoride). J. Polymer Sci. A-2, 7, 1405 (1969).Google Scholar
  86. 86.
    Sawada, S.: Physics of magnetic and dielectric materials. Tokyo, Ohm-sha (1961).Google Scholar
  87. 87.
    Shamos, M. H., Lavine, L. S., Shamos, M. I.: Piezoelectric effect in bone. Nature 197, 81 (1963).Google Scholar
  88. 88.
    — — Piezoelectricity as a fundamental property of biological tissues. Nature 213, 267 (1967).Google Scholar
  89. 89.
    Staverman, A. J.: Thermodynamic aspects of the glass-rubber transition. Rheol. Acta 5, 283 (1966).Google Scholar
  90. 90.
    Sugai, S., Kamashima, K., Makino, S., Noguchi, J.: Poly(γ-alkyl glutamates). I. J. Polymer Sci. A-2, 4, 183 (1966).Google Scholar
  91. 91.
    Ueda, H., Fukada, E.: Piezoelectric effects in fibrin-films. Rep. Progr. Polymer Phys. Japan 14, 481 (1971).Google Scholar
  92. 92.
    Wada, A.: Polyamino acids, polypeptides, and proteins, p. 131. M. A. Stahmann (Ed). Madison: Univ. Wisconsin Press 1962.Google Scholar
  93. 93.
    Wada, Y., Hira, R., Furukawa, T., Takubo, Y.: Piezoelectricity of polymer films. Rep. Progr. Polymer Phys. Japan 9, 435 (1966).Google Scholar
  94. 94.
    —, Tsuge, K., Hayakawa, R.: Relaxations in crystalline, paracrystalline, and glassy phases in polymers. J. Polymer Sci. C15, 101 (1966).Google Scholar
  95. 95.
    — Hayakawa, R.: Relaxation processes in crystalline and non-crystalline phases in polymers. Progress in Polymer Science, Japan, Vol. 3. Tokyo: Kodansha 1972.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • R. Hayakawa
    • 1
  • Y. Wada
    • 1
  1. 1.Department of Applied Physics, Faculty of EngineeringUniversity of TokyoBunkyo-ku, TokyoJapan

Personalised recommendations