Observations of the variability of dissipation rates of turbulent velocity and temperature fields

  • Carl H. Gibson
  • Paul J. Masiello
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 12)


Velocity and temperature derivatives are squared and averaged for comparison with lognormality theories of Kolmogoroff, Obukhoff, Yaglom and Gurvich for the variability of local dissipation rates. Averaged squared derivatives were found to depart from lognormality for small values, especially velocity at lower Reynolds numbers, contrary to the proposal of Gurvich and Yaglom (1967). The universal constant μ of Kolmogoroff's third hypothesis was estimated to be 0.47 ± 0. 03 from the variation of \({{\sigma }}_{{{ln \dot u}}_{{r}} ^2 }^{{2}}\) with in(Lo/r), and 0. 49 ± 0. 2 from the variance of the ratio \(({{\dot u}}_{{r}} ^2 /{{\dot u}}_{{{2r}}} ^2 )\) for various scales r. The departure from lognormality for small values may be due to the fact that squared derivatives are not always proportional to the local dissipation rates.


Dissipation Ratio Average Dissipation Rate Local Dissipation Rate Gaussian Plot Lognormality Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kolmogoroff, A. N. 1941. Dokl. AN SSSR 30, 301.Google Scholar
  2. 2.
    Obukhoff, A. M. 1941. Dokl. AN SSSR 32, 19.Google Scholar
  3. 3.
    Landau, L. D. and Lifshitz, E. M. 1959. Fluid Mechanics, Addison-Wesley.Google Scholar
  4. 4.
    Kolmogoroff, A. N. 1962. J. Fluid Mech. 13, 82.Google Scholar
  5. 5.
    Obukhoff, A. M. 1962. J. Fluid Mech. 13, 77.Google Scholar
  6. 6.
    Yaglom, A. M. 1966. Dokl. AN SSSR 166, 49.Google Scholar
  7. 7.
    Gurvich, A. S. and Zubkovskii, S. L. 1963. Izv. AN SSR, Geofiz, 1856.Google Scholar
  8. 8.
    Gurvich, A. S. 1967. Dokl. AN SSSR 172, 554 [Sov. Phys. Dokl. 12, 17 (1967)].Google Scholar
  9. 9.
    Gibson, C. H. and Williams, R. B. 1969. Proceedings AGARD Specialists Symposium on the Aerodynamics of Atmoshperic Shear Flow, Munich, Sept. 15–17, Paper No. 5.Google Scholar
  10. 10.
    Pond, S. and Stewart, R. W. 1965. Izv. AN SSSR, Geofiz. 1,914.Google Scholar
  11. 11.
    Gibson, C. H., Stegen, G. R. and Williams, R. B. 1970. J. Fluid Mech. 41, 153.Google Scholar
  12. 12.
    Stewart, R. W., Wilson, J. R. and Burling, R. W. 1970. J. Fluid Mech. 41, 141.Google Scholar
  13. 13.
    Gibson, C. H., Stegen, G. R. and McConnell, S. 1970. Phys. Fluids 13, 2448.Google Scholar
  14. 14.
    Chen, W. Y. 1971. Phys. Fluids 14, No. 8.Google Scholar
  15. 15.
    Gibson, C. H., Friehe, C. A. and McConnell, S.1971.“Measurements of Sheared Turbulent Scalar Fields” (to be published).Google Scholar
  16. 16.
    Friehe, C. A., Van Atta, C. and Gibson, C. H. 1971. Proceedings AGARD Specialists' Meeting on Turbulent Shear Flows, London, Sept. 13–15.Google Scholar
  17. 17.
    Wyngaard, J. C. and Tennekes, H. 1970. Phys. Fluids 13, 1962.Google Scholar
  18. 18.
    Gurvich, A. S. and A. M. Yaglom. 1967. Phys. Fluids Suppl. 10, 559.Google Scholar
  19. 19.
    Sheih, C. M., Tennekes, H. and Lumley, J. L. 1971. Phys. Fluids 14, 201.Google Scholar
  20. 20.
    Pond, S., R. W. Stewart and R. W. Burling. 1963. J. Atm. Sci. 20, 319.Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Carl H. Gibson
    • 1
  • Paul J. Masiello
    • 1
  1. 1.University of CaliforniaSan Diego La Jolla

Personalised recommendations