Skip to main content

Kinetic theory and rheology of dumbbell suspensions with Brownian motion

  • Conference paper
  • First Online:
Fortschritte der Hochpolymeren-Forschung

Part of the book series: Advances in Polymer Science ((POLYMER,volume 8))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

b :

dimensionless shear rate [Eq. (6.11)]

C :

cos θ

c :

cos φ

C m :

cos

F :

probability density in position-velocity space

F i :

force on i th bead through the connector

F (c) :

tension in the connector of the dumbbell

H :

Hooke law constant for a spring

h :

function defined in Eq. (25.4)

i :

\(\sqrt { - 1}\)

j :

iλω

J :

normalization constant defined in Eq. (3.14)

J e :

equilibrium shear compliance [Eq. (13.3)]

k :

Boltzmann constant

L :

distance between bead centers in a rigid dumbbell

M :

molecular weight

m :

mass of a bead of the dumbbell

Ñ :

Avogadro's number

n :

normal unit vector

n 0 :

number density of dumbbell

P m n :

spherical harmonics [Eq. (5.5)]

p :

thermodynamic pressure

Q :

any function of R

r :

position vector for center of mass of dumbbell

r i :

position vector for i th bead (with coordinates x x , y i , z i )

R :

orientation vector with components X, Y, Z (= r 2r 1)

R :

separation between beads of dumbbell (= |R|)

R :

gas constant in Eq. (6.11)

S :

area of surface in Eqs. (4.11) and (4.12)

S :

sin θ

s :

sin φ

s m :

sin

T :

absolute temperature

t :

time

v :

local fluid velocity

v′ :

perturbation velocity (§ 25)

x j :

mole fraction of j th species [Eq. (26.1)]

x i , y i , z i :

components of r i

X, Y, Z :

components of R

β :

secondary normal stress function [Eq. (6.3)]

β 0 :

secondary normal stress function at zero shear rate

Γ :

gamma function

\(\dot \gamma \) :

rate of deformation tensor [after Eq. (3.1)]

γ :

ultimate shear recovery [Eq. (12.1)]

γ :

infinitesimal strain

δ :

unit tensor

δ :

Dirac delta function

δ R :

unit vector in radial direction

δ i :

unit vector in i th Cartesian direction

ξ :

friction coefficient of a bead

η :

viscosity function in Eq. (6.1) (non-Newtonian viscosity)

η s :

solvent viscosity

η 0 :

zero shear rate viscosity

[η]:

intrinsic viscosity [Eq. (6.9)]

[η]0 :

zero-shear-rate intrinsic viscosity

η*:

complex viscosity (η′ − iη″)

\(\bar \eta\) :

elongational viscosity

θ :

angle down from z-axis in spherical coordinates

θ :

primary normal stress function [Eq. (6.2)]

θ 0 :

primary normal stress function at zero shear rate

κ :

tensor specifying the homogeneous velocity field [Eq. (3.1)]

κ :

shear rate in shear flow

\(\bar \kappa\) :

elongational rate in elongational flow

Λ :

operator in Eq. (5.1)

λ 1 :

time constant for Hookean dumbbell [Eq. (4.24)]

λ :

time constant for rigid dumbbell [Eq. (5.1)]

λ h :

time constant for rigid dumbbell with hydrodynamic interaction [before Eq. (25.15)]

λ j :

time constant defined after Eq. (26.2)

Ξ :

probability density in velocity space [Eq. (4.2)]

π :

pressure tensor (total stress tensor)

ϱ :

density of fluid

τ :

stress tensor (or extra stress tensor)

τ s :

solvent contribution to stress tensor [Eq. (4.1)]

τ p :

polymer contribution to stress tensor [Eq. (4.1)] ( = τ (b) p + τ (c) p )

Ψ :

geometrical ratio in § 21

φ :

angle about the z-axis in spherical coordinates

ψ :

probability density for two beads

ψ :

probability density for internal configuration of a dumbbell

ψ′ :

probability density for orientation of a rigid dumbbell [see Eq. (3.13 a)]

ψ j :

expansion functions in Eq. (6.4)

Ω :

Oseen tensor in § 25

Ω :

angular velocity in § 21

Ω :

operator in Eq. (5.1)

Ω e :

operator in Eq. (15.1)

ω :

frequency

ω :

vorticity tensor [Eq. (20.3)]

:

nabla operator

\(\frac{D}{{Dt}}\) :

substantial derivative

\(\frac{\mathfrak{d}}{{\mathfrak{d}t}}\) :

convected derivative [Eq. (3.17)]

d R :

dXdYdZ

\(\frac{\partial }{{\partial R}}\) :

vector operator with components \(\frac{\partial }{{\partial X}},\frac{\partial }{{\partial Y}},\frac{\partial }{{\partial Z}}\)

e :

real part of

〈 〉:

expectation value defined in Eq. (3.13)

{A, B, C}:

special symbol defined in Eq. (12.13)

†:

transpose of a tensor

*:

complex viscometric functions (see §§7, 8, 9, 22)

·:

time differentiation

—:

expectation value in Eq. (4.25)

—:

complex conjugate in Eq. (7.9)

References

  1. Ballman, R. L.: Extensional flow of polystyrene melt. Rheol. Acta 4, 137–140 (1965).

    Article  CAS  Google Scholar 

  2. Benbow, J. J., Howells, E. R.: Normal stress, shear recovery, and viscosity in polydimethyl siloxanes. Polymer 2, 429–436 (1961).

    Article  CAS  Google Scholar 

  3. Bird, R. B., Evans, D. C., Warner, H. R., Jr.: Recoil in macromolecular solutions according to rigid dumbbell kinetic theory. Applied Scientific Research 22, 185–192 (1970).

    Google Scholar 

  4. — Harris, E. K., Jr.: Analysis of steady state shearing and stress relaxation in the Maxwell orthogonal rheometer. A.I.Ch.E. J. 14, 758–761 (1968); 16, 149 (1970).

    Google Scholar 

  5. — Johnson, M. W., Curtiss, C. F.: Potential flows of dilute polymer solutions by Kramers' method. J. Chem. Phys. 51, 3023–3026 (1969).

    Article  CAS  Google Scholar 

  6. — — Stevenson, J. F.: Molecular theories of elongational viscosity. Proc. 5th International Congress on Rheology, Vol. 4, pp. 159–168. Tokyo: University of Tokyo Press 1970.

    Google Scholar 

  7. — Marsh, B. D.: Viscoelastic hysteresis, Part I. Model predictions. Trans. Soc. Rheol. 12, 479–488 (1968).

    Article  CAS  Google Scholar 

  8. Bird, R. B., Stewart, W. E., Lightfoot, E. N.: Transport phenomena. New York: Wiley 1960.

    Google Scholar 

  9. — Warner, H. R., Jr.: Creep in macromolecular solutions according to rigid dumbbell kinetic theory. Appl. Sci. Res. 22, 193–196 (1970).

    Google Scholar 

  10. — — Hydrodynamic interaction effects on the behavior of solutions of linear macromolecules. Trans. Soc. Rheol. (1971).

    Google Scholar 

  11. — — Ramakka, W. R.: Stress relaxation in solutions of linear macromolecules. J. Chem. Phys. 52, 2001–2002 (1970).

    Article  CAS  Google Scholar 

  12. Bogue, D. C., Doughty, J. O.: Comparison of constitutive equations for viscoelastic fluids. Ind. Eng. Chem. Fundamentals 5, 243–252 (1966).

    Article  CAS  Google Scholar 

  13. Booij, H. C.: Influence of superposed steady shear flow on the dynamic properties of non-newtonian fluids. Rheol. Acta 5, 215–221; 222–227 (1966).

    Article  CAS  Google Scholar 

  14. — Effect of superimposed steady shear flow on dynamic properties of polymeric fluids. Doctoral Thesis, Leiden, Holland (1970).

    Google Scholar 

  15. Brenner, H.: Hydrodynamic resistance of particles at small Reynolds numbers. Adv. in Chem. Engr., 6, 287–438 (1966).

    CAS  Google Scholar 

  16. — Rheology of Two-Phase Systems. Ann. Rev. Fluid Mechanics, 2, 137–176 (1970).

    Article  Google Scholar 

  17. Burgers, J. M.: On the motion of small particles of elongated form suspended in a viscous liquid. Verhandel. Koninkl. Ned. Akad. Wetenschap. 16 (Sect. 1, Chap. 3) 113–184 (1938).

    Google Scholar 

  18. Carreau, P. J.: Rheological equations from molecular network theories. Ph. D. Thesis, University of Wisconsin, 1968.

    Google Scholar 

  19. — Macdonald, I. F., Bird, R. B.: A nonlinear viscoelastic model for polymer solutions and melts-II. Chem. Eng. Sci. 23, 901–911 (1968).

    Article  CAS  Google Scholar 

  20. Cerf, R.: La dynamique des solutions de macromolécules dans un champ de vitesses. Fortschr. Hochpolym.-Forsch., 1, 382–450 (1959).

    Article  Google Scholar 

  21. Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1–89 (1943).

    Article  Google Scholar 

  22. Cogswell, F. N.: The rheology of polymer melts under tension. Plastic and Polymers 36, 109–111 (1968).

    CAS  Google Scholar 

  23. — Tensile deformations in molten polymers. Rheol. Acta 8, 187–194 (1969).

    Article  CAS  Google Scholar 

  24. Coleman, B. D., Markovitz, H.: Normal stress effects in second-order fluids. J. Appl. Phys. 35, 1–9 (1964).

    Article  Google Scholar 

  25. — — Noll, W.: Viscometric flows of non-newtonian fluids. Berlin-Heidelberg-New York: Springer 1966.

    Google Scholar 

  26. — Noll, W.: Foundations of linear viscoelasticity. Rev. Mod. Phys. 33, 239–249 (1961).

    Article  Google Scholar 

  27. Cox, W. P., Merz, E. H.: Correlation of dynamic and steady flow viscosities. J. Polymer Sci. 28, 619–622 (1958).

    Article  CAS  Google Scholar 

  28. Dirac, P. A. M.: The principles of quantum mechanics, 3rd Ed., pp. 58–61. Oxford: Oxford University Press 1947.

    Google Scholar 

  29. Erdélyi, A., et al.: Tables of integral transforms. New York: McGraw-Hill 1954.

    Google Scholar 

  30. Evans, D. C., Warner, H. R., Jr., Ramakka, W. R., Bird, R. B.: Behavior of solutions of linear macromolecules in steady shear flow with superposed oscillations. J. Chem. Phys. 52, 4086–4089 (1970).

    Article  CAS  Google Scholar 

  31. Ferry, J. D.: Viscoelastic properties of polymers, 2nd Ed. New York: Wiley 1970.

    Google Scholar 

  32. — Holmes, L. A., Lamb, J., Matheson, A. J.: Viscoelastic behavior of dilute polystyrene solutions in an extended frequency range. J. Phys. Chem. 70, 1685–1689 (1966).

    Article  CAS  Google Scholar 

  33. Fixman, H.: Dynamics of polymer chains. J. Chem. Phys. 42, 3831–3837 (1965).

    Article  CAS  Google Scholar 

  34. Fraenkel, G. K.: Visco-elastic effect in solutions of simple particles. J. Chem. Phys. 20, 642–647 (1952).

    Article  CAS  Google Scholar 

  35. Fredrickson, A. G.: Principles and applications of rheology. Englewood Cliffs, N.J.: Prentice-Hall 1964.

    Google Scholar 

  36. Frisch, H. D., Simha, R.: The viscosity of colloidal suspensions and macromolecular solutions. Chapter 14 of Vol. 1 of Rheology (ed. by F. R. Eirich) Academic Press, New York (1956).

    Google Scholar 

  37. Giesekus, H.: Das Reibungsgesetz der strukturviskosen Flüssigkeit. (See erratum in fn. 18 of H. Giesekus, Rheol. Acta 1, 404 (1961).) Kolloid-Z. 147–149, 29–45 (1956).

    Article  Google Scholar 

  38. — Die rheologische Zustandsgleichung. Rheol. Acta 1, 2–20 (1958).

    Article  CAS  Google Scholar 

  39. — Einige Bemerkungen zum Fließverhalten elasto-viskoser Flüssigkeiten in stationären Schichtströmungen. Rheol. Acta 1, 404–413 (1961). See fn. 18.

    Article  CAS  Google Scholar 

  40. — Die Elastizität von Flüssigkeiten. Rheol. Acta 5, 29–35 (1966).

    Article  Google Scholar 

  41. Hirschfelder, J. O., Curtiss, C. F., Bird, R. B.: Molecular theory of gases and liquids. Second Printing with Corrections, pp. 905–912. New York: Wiley 1964.

    Google Scholar 

  42. Huppler, J. D., Macdonald, I. F., Ashare, E., Spriggs, T. W., Bird, R. B., Holmes, L. A.: Rheological properties of three solutions. Part II. Relaxation and growth of shear and normal stresses. Trans. Soc. Rheol. 11, 181–204 (1967).

    Article  CAS  Google Scholar 

  43. Janeschitz-Kriegl, H.: Flow birefringence of elastico-viscous polymer systems. Adv. Polymer Sci., 6, 170–318 (1969).

    Article  CAS  Google Scholar 

  44. Jeffery, G. B.: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. Roy. Soc., A 102, 161–179 (1922).

    Article  Google Scholar 

  45. Kirkwood, J. G.: Macromolecules. New York: Gordon and Breach 1967.

    Google Scholar 

  46. — The statistical mechanical theory of irreversible processes in solutions of flexible macromolecules. Rec. Trav. Chim. 68, 649–660 (1949).

    Article  CAS  Google Scholar 

  47. — Auer, P. L.: The visco-elastic properties of solutions of rod-like macromolecules. J. Chem. Phys. 19, 281–283 (1951).

    Article  CAS  Google Scholar 

  48. — Plock, R. J.: Non-Newtonian visco-elastic properties of rod-like macromolecules in solution. J. Chem. Phys. 24, 665–669 (1956).

    Article  CAS  Google Scholar 

  49. — Riseman, J.: The intrinsic viscosities and diffusion constants of flexible macromolecules in solution. J. Chem. Phys. 16, 565–573 (1948); 22, 1626–1627 (1954).

    Article  CAS  Google Scholar 

  50. Kotaka, T.: Note on the normal stress effect in the solution of rod-like macromolecules. J. Chem. Phys. 30, 1566–1567 (1959).

    Article  CAS  Google Scholar 

  51. — Suzuki, H., Inagaki, H.: Shear-rate dependence of the intrinsic viscosity of flexible linear macromolecules. J. Chem. Phys. 45, 2770–2773 (1966).

    Article  CAS  Google Scholar 

  52. Kramers, H. A.: Het gedrag van macromoleculen in een stroomende vloeistof. Physica 11, 1–19 (1944).

    Article  CAS  Google Scholar 

  53. Kuhn, W., Kuhn, H.: Die Abhängigkeit der Viskosität vom Strömungsgefälle bei hochverdünnten Suspensionen und Lösungen. Helv. Chim. Acta 28, 97–127 (1945).

    Article  CAS  Google Scholar 

  54. — — Buchner, P.: Hydrodynamisches Verhalten von Macromolekülen in Lösung. Ergebnisse der exakten Naturwissenschaften, 25, 1–108 (1951).

    Google Scholar 

  55. Lodge, A. S.: Elastic liquids, New York: Academic Press 1964.

    Google Scholar 

  56. — A network theory of flow birefringence and stress in concentrated polymer solutions. Trans. Faraday Soc., 52, 120–130 (1956).

    Article  CAS  Google Scholar 

  57. — Constitutive equations from molecular network theories for polymer solutions. Rheol. Acta 7, 379–392 (1968).

    Article  Google Scholar 

  58. — Concentrated polymer solutions. Proc. 5th International Congress on Rheology, Vol. 4. Tokyo: University of Tokyo Press 1969; (also MRC Tech. Summary Report No. 944, Oct. 1968, Mathematics Research Center, University of Wisconsin).

    Google Scholar 

  59. Lodge, A. S., Wu, Y.: Constitutive equations for polymer solutions derived from Zimm's bead/spring model. Rheol. Acta (to be submitted).

    Google Scholar 

  60. Macdonald, I. F.: Time dependent nonlinear behavior of viscoelastic fluids. Ph. D. Thesis, Univ. of Wisconsin (1968).

    Google Scholar 

  61. — Bird, R. B.: Complex modulus of concentrated polymer solutions in steady shear. J. Phys. Chem. 70, 2068–2069 (1966).

    Article  CAS  Google Scholar 

  62. — Marsh, B. D., Ashare, E.: Rheological behavior for large amplitude oscillatory motion. Chem. Engr. Sci. 24, 1615–1625 (1969).

    Article  CAS  Google Scholar 

  63. Markovitz, H., Coleman, B. D.: Incompressible second-order fluids. Advanc. Appl. Mech. 8, 69–101 (1964).

    Article  Google Scholar 

  64. Marsh, B. D.: Viscoelastic hysteresis. Part II. Numerical and experimental examples. Trans. Soc. Rheol. 12, 489–510 (1968).

    Article  CAS  Google Scholar 

  65. Massa, D. J.: Computerized measurement of the dynamic viscoelastic properties of dilute polymer solutions over an extended range of solvent viscosity. Ph. D. Thesis, University of Wisconsin (1970).

    Google Scholar 

  66. Maxwell, B., Chartoff, R. P.: Studies of a polymer melt in an orthogonal rheometer. Trans. Soc. Rheol. 9, 41–52 (1965).

    Article  CAS  Google Scholar 

  67. Meissner, J.: Rheometer zur Untersuchung der deformationsmechanischen Eigenschaften von Kunststoff-Schmelzen unter definierter Zugbeanspruchung. Rheol. Acta 8, 78–88 (1969).

    Article  CAS  Google Scholar 

  68. — Dehnungsverhalten von Polyäthylen-Schmelzen. Rheol. Acta (submitted for publication).

    Google Scholar 

  69. Moore, R. S., McSkimin, H. J., Gieniewski, C., Andreatch, P., Jr.: Dynamic mechanical properties of concentrated polystyrene solutions at 40 MHz. J. Chem. Phys. 47, 3–9 (1967).

    Article  Google Scholar 

  70. Noda, I., Yamada, Y., Nagasawa, M.: The rate of shear dependence of the intrinsic viscosity of monodisperse polymer. J. Phys. Chem. 72, 2890–2898 (1968).

    Article  CAS  Google Scholar 

  71. Oldroyd, J. G.: On the formulation of rheological equations of state. Proc. Roy. Soc. (London) A 200, 523–541 (1950).

    Google Scholar 

  72. Osaki, K., Tamura, M., Kurata, M., Kotaka, T.: Complex modulus of concentrated polymer solutions in steady shear. J. Phys. Chem. 69, 4183–4191 (1965).

    Article  CAS  Google Scholar 

  73. Oseen, C. W.: Über die Stokes'sche Formel und über eine verwandte Aufgabe in der Hydrodynamik. Ark. f. Mat. Astr. og. Fys. 6, No. 29, 1–20 (1910).

    Google Scholar 

  74. Paul, E.: Non-Newtonian viscoelastic properties of rod-like molecules in solution: Comment on a paper by Kirkwood and Plock. J. Chem. Phys. 51, 1271–1272 (1969).

    Article  CAS  Google Scholar 

  75. Peterlin, A.: Einfluß der endlichen Moleküllänge auf die Gradientenabhängigkeit des Staudinger-Index. Makromol. Chem. 44–46, 338–346 (1961).

    Article  Google Scholar 

  76. — Über die Viskosität von verdünnten Lösungen und Suspensionen in Abhängigkeit von der Teilchenform. Zeits. Physik, 111, 232–263 (1938).

    Article  CAS  Google Scholar 

  77. — Non-Newtonian viscosity and the macromolecule. Adv. in Macromolecular Chemistry, 1, 225–281 (1968).

    CAS  Google Scholar 

  78. Pipkin, A. C.: Small displacements superposed on viscometric flow. Trans. Soc. Rheol., 12, 397–408 (1968).

    Article  Google Scholar 

  79. Prager, S.: Stress-strain relations in a suspension of dumbbells. Trans. Soc. Rheol. 1, 53–62 (1957).

    Article  Google Scholar 

  80. Radushkevich, B. V., Fikhman, V. D.: Vinogradov, G. V.: Uniaxial uniform-speed elongation of high-elasticity liquids (of low molecular polyisobutylene as an example). Dokl. Akad. Nauk. SSSR 180, 404–407 (1968).

    CAS  Google Scholar 

  81. — — — A method for investigating the elongation of highly elastic liquids. Mekhan. Polimerov 2, 343–348 (1968).

    Google Scholar 

  82. Riseman, J., Kirkwood, J. G.: The intrinsic viscosity, translational and rotatory diffusion constants of rodlike macromolecules in solution. J. Chem. Phys. 18, 512–516 (1950).

    Article  CAS  Google Scholar 

  83. Rivlin, R. S.: Further remarks on the stress-deformation relations for isotropic materials. J. Rat. Mech. Analysis 4, 681–702 (1955).

    Google Scholar 

  84. Saitō, N.: Kōbunshi Butsurigaku, Shokabō, Tōkyō, Revised Edition (1968).

    Google Scholar 

  85. — The effect of the Brownian motion on the viscosity of solutions of macromolecules. J. Phys. Soc. Japan, 6–7, 297–301, 302–304 (1951).

    Google Scholar 

  86. Scheraga, H. A.: Non-Newtonian viscosity of solutions of ellipsoidal particles. J. Chem. Phys., 23, 1526–1532 (1955).

    Article  CAS  Google Scholar 

  87. Schremp, F. W., Ferry, J. D., Evans, W. W.: Mechanical properties of substances of high molecular weight. IX. Non-Newtonian flow and stress relaxation in concentrated polyisobutylene and polystyrene solutions. J. Appl. Phys. 22, 711–717 (1951).

    Article  CAS  Google Scholar 

  88. Simmons, J. M.: Dynamic modulus of polystyrene solutions in superposed steady shear flow, Rheol. Acta, 7, 184–188 (1968).

    Article  CAS  Google Scholar 

  89. Spriggs, T. W.: Constitutive equations for viscoelastic fluids. Ph. D. Thesis, University of Wisconsin (1966).

    Google Scholar 

  90. Stevenson, J. F.: Elongational flow of polymer melts. Ph. D. Thesis, University of Wisconsin (1970).

    Google Scholar 

  91. Stewart, W. E., Sørensen, J. P.: Trans. Soc. Rheol. (1971).

    Google Scholar 

  92. Vinogradov, G. V., Radushkevich, B. V. Fikhman, V. D.: Extension of elastic liquids: Polyisobutylene. J. Polymer Sci. A-2, 8, 1–17 (1970).

    Article  CAS  Google Scholar 

  93. Wada, E.: Effect of rate of shear on viscosity of a dilute linear polymer and of tobacco mosaic virus in solution. J. Polymer Science, 14, 305–307 (1954).

    Article  CAS  Google Scholar 

  94. Warner, H. R., Jr.: Rigid structural models of dilute macromolecular solutions. Ph. D. Thesis, University of Wisconsin (1971).

    Google Scholar 

  95. — Bird. R. B.: A molecular interpretation of the steady state Maxwell orthogonal rheometer flow. A. I.Ch.E. J. 16, 150 (1970).

    Google Scholar 

  96. Williams, M. C.: Normal stresses in polymer solutions with remarks on the Zimm treatment. J. Chem. Phys. 42, 2988–2989 (1965).

    Article  CAS  Google Scholar 

  97. — Bird, R. B.: Oscillatory behavior of normal stresses in viscoelastic fluids. Ind. Eng. Chem. Fundamentals 3, 42–49 (1964).

    Article  CAS  Google Scholar 

  98. — — Three-constant Oldroy model for viscoelastic fluids. Phys. Fluids. 5, 1126–1128 (1962).

    Article  Google Scholar 

  99. Yang, J. T.: Non-Newtonian viscosity of poly-γ-benzyl-L-glutamate solutions. J. Amer. Chem. Soc., 80, 1783–1788 (1958).

    Article  CAS  Google Scholar 

  100. — Factors affecting the non-Newtonian viscosity of rigid particles. J. Amer. Chem. Soc., 81, 3902–3907 (1959).

    Article  CAS  Google Scholar 

  101. Zimm, B. H.: Dynamics of polymer molecules in dilute solution: Viscoelasticity, flow birefringence and dielectric loss. J. Chem. Phys. 24, 269–278 (1956).

    Article  CAS  Google Scholar 

  102. Zwanzig, R.: Langevin theory of polymer dynamics in dilute solution. Adv. Chem. Phys. 15, 325–331 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag

About this paper

Cite this paper

Bird, R.B., Warner, H.R., Evans, D.C. (1971). Kinetic theory and rheology of dumbbell suspensions with Brownian motion. In: Fortschritte der Hochpolymeren-Forschung. Advances in Polymer Science, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-05483-9_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-05483-9_9

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-05483-2

  • Online ISBN: 978-3-540-36658-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics