Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 474))

Abstract

Interface damage and delamination is usually accompanied by frictional slip at contacting interfaces under compressive normal stress. Under tensile stress the separation and opening mode develops. The present study provides a simplified analysis of progressive interface failure under applied in plane tractions and normal compressive traction. The cohesive crack model is used to simulate damage frictional traction present at contact. Both monotonic and cyclic loadings are considered for an elastic plate bonded to a rigid substrate by means of cohesive interface. The analysis of progressive delamination process revealed three solution types, namely short, medium and long plate solutions. For cyclic loading the states of frictional slip accompanied by shake down or incremental failure are distinguished. The finite element solutions confirm the validity of simplified analysis. The thermal loading case is studied separately under monotonic and cyclic temperature loading history. The cracking of plate is now accompanied by frictional slip and progressive delamination of the interface layer. The analysis predicts the cracking pattern and the size of delaminated zones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • D. C. Agrawal and R. Raj. Measurement of the ultimate shear strength of a metal-ceramic interface. Acta metall, 37(4): 1265–1270, 1989.

    Article  Google Scholar 

  • D. C. Agrawal and R. Raj. Ultimate shear strengths of copper-silica and nickel-silica interfaces. Materials Science and Engineering, A126:125–131, 1990.

    Google Scholar 

  • S. P. Baker, X. Wang, and C.-Y. Hui. Effect of nonlinear elastic behavior on bilayer decohesion of thin metal films from nonmetal substrate. Journal of Applied Mechanics, 69:407–414, July 2002.

    Article  Google Scholar 

  • G. I. Barenblatt. The mathematical theory of equilibrium cracks in brittle fracture. In Advances in Applied Mechanics, volume 7, pages 55–129. Academic Press, New York, 1962.

    Google Scholar 

  • S. J. Bennison and B. R. Lawn. Role of interfacial crack bridging sliding friction in the crack resistance and strength properties of non-transforming ceramics. Acta Metallurgica, 37(10):2659–2671, 1989.

    Article  Google Scholar 

  • M. Białas and Z. Mróz. Modelling of progressive interface failure under combined normal compression and shear stress. Submitted to International Journal of Solids and Structures, 2004.

    Google Scholar 

  • B. F. Chen, J. Hwang, I. F. Chen, G. P. Yu, and J-H. Huang. A tensile-film-cracking model for evaluating interfacial shear strength of elastic film on ductile substrate. Surface and Coatings Technology, 126:91–95, 2000.

    Article  Google Scholar 

  • S. Chi and Y.-L. Chung. Cracking in coating-substrate composite with multi-layered and fgm coatings. Engineering Fracture Mechanics, 70:1227–1243, 2003.

    Article  Google Scholar 

  • Y.-L. Chung and C.-F. Pon. Boundary element analysis of cracked film-substrate media. International Journal of Solids and Structures, 38:75–90, 2001.

    Article  MATH  Google Scholar 

  • D. S. Dugdale. Yielding of steel sheets containing slits. Journal of Mechanics and Physics of Solids, 8:100–104, 1960.

    Article  Google Scholar 

  • B. Erdem Alaca, M. T. A. Saif, and Huseyin Sehitoglu. On the interface debond at the edge of a thin film on a thick substrate. Acta Materialia, 50:1197–1209, 2002.

    Article  Google Scholar 

  • A. G. Evans and J. W. Hutchinson. Effect of non-planarity on the mixed mode fracture resistance. Ada Metallurgica, 37(3):909–916, 1989.

    Article  Google Scholar 

  • T. S. Gross and D. A. Mendelsohn. Model I stress intensity factors induced by fracture surface roughness under pure mode III loading: application to the effect of loading models on stress corrosion crack growth. Metallurgical and Material Transactions A, 20(10), 1989.

    Google Scholar 

  • U. A. Handge, Y. Leterrier, G. Rochat, I. M. Sokolov, and A. Blumen. Two scaling domains in multiple cracking phenomena. Physical Review E, 62(6):7807–7810, 2000.

    Article  Google Scholar 

  • U. A. Handge, I. M. Sokolov, and A. Blumen. Disorder and plasticity in the fragmentation of coatings. Physical Review E, 64:106–109, 2001.

    Article  Google Scholar 

  • A. Hillerborg, M. Modeer, and P. E. Peterson. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6:773–782, 1976.

    Article  Google Scholar 

  • D. R. Hiltunen and R. Roque. A mechanics-based prediction model for thermal cracking of asphaltic concrete pavements. Association of Asphalt Paving Technologists, 63: 81–117, 1994.

    Google Scholar 

  • J. W. Hutchinson and Z. Suo. Mixed mode cracking of layered materials. In J. W. Hutchinson and T. Y. Wu, editors, Advances in Applied Mechanics, volume 29, pages 63–191. Academic Press, 1991.

    Google Scholar 

  • S.-R. Kim and J. A. Nairn. Fracture mechanics analysis of coating/substrate systems. part i: Analysis of tensile and bending experiments. Engineering Fracture Mechanics, 65:573–593, 2000a.

    Article  Google Scholar 

  • S.-R. Kim and J. A. Nairn. Fracture mechanics analysis of coating/substrate systems. part ii: Experiments in bending. Engineering Fracture Mechanics, 65:595–607, 2000b.

    Article  Google Scholar 

  • K. Kokini and Y. R. Takeuchi. Multiple surface thermal fracture of graded ceramic coatings. Journal of Thermal Stresses, 27:715–725, 1998.

    Google Scholar 

  • Z. Mróz and M. Białas. A simplified analysis of interface failure under compressive normal stress and monotonic or cyclic shear loading. International Journal of Numerical and Analytical Methods in Geomechanics. In press, 2004.

    Google Scholar 

  • Z. Mróz and A. Seweryn. Non local failure and damage evolution rule: application to a dilatant crack model. Journal de Physique IV, 8(Pr 8):257–268, 1998.

    Google Scholar 

  • Z. Mróz and S. Stupkiewicz. Hysteretic effects and progressive delamination at composite interfaces. In R. Pyrz, editor, IUTAM Symposium on Micro structure-Property Interactions in Composite Materials, pages 247–264. Kluwer Academic Publishers, 1995.

    Google Scholar 

  • J. A. Nairn and S.-R. Kim. A fracture mechanics analysis of multiple cracking in coatings. Engineering Fracture Mechanics, 42:195–208, 1992.

    Article  Google Scholar 

  • M. Ortiz. Computational micro-mechanics. Computational Mechanics, 18(5):324–338, 1996.

    MathSciNet  Google Scholar 

  • H. L. Schreyer and A. Peffer. Fiber pullout based on a one-dimensinal model of decohesion. Mechanics of Materials, 32:821–836, 2000.

    Article  Google Scholar 

  • G. W. Schulze and F. Erdogan. Periodic cracking of elastic coating. International Journal of Solids and Structures, 35(28–29):3615–3634, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  • F.-S. Shieu, R. Raj, and S. L. Sass. Control of mechanical properties of metal-ceramic interfaces through interfacial reactions. Acta metall mater., 38(11):2215–2224, 1990.

    Article  Google Scholar 

  • D. H. Timm, B. B. Guzina, and V. R. Voller. Prediction of thermal crack spacing. International Journal of Solids and Structures, 40:125–142, 2003.

    Article  MATH  Google Scholar 

  • S. Wolfram. The Mathematica Book (4th ed.). Wolfram Media/Cambridge University Press, 1999.

    Google Scholar 

  • Z. C. Xia and J. W. Hutchinson. Crack patterns in thin films. Journal of Mechanics and Physics of Solids, 48:1107–1131, 2000.

    Article  MATH  Google Scholar 

  • B. Yang and K. Ravi-Chandar. Antiplane shear crack growth under quasistatic loading in a damaging material. International Journal of Solids and Structures, 35(28,29): 3695–3715, 1997.

    Google Scholar 

  • T.-Y. Zhang and M.-H. Zhao. Equilibrium depth and spacing of cracks in a tensile residual stressed thin film deposited on a brittle substrate. Engineering Fracture Mechanics, 69:589–596, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 CISM, Udine

About this chapter

Cite this chapter

Białas, M., Mróz, Z. (2005). Damage Modelling at Material Interfaces. In: Sadowski, T. (eds) Multiscale Modelling of Damage and Fracture Processes in Composite Materials. CISM International Centre for Mechanical Sciences, vol 474. Springer, Vienna. https://doi.org/10.1007/3-211-38102-3_6

Download citation

  • DOI: https://doi.org/10.1007/3-211-38102-3_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-29558-8

  • Online ISBN: 978-3-211-38102-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics