Skip to main content

Elastic modelling of surface waves in single and multicomponent systems

  • Chapter

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 481))

Abstract

The main aim of this article is to present a review of most important acoustic surface waves which are described by linear one- and two-component models. Among the waves in one-component linear elastic media we present the classical Rayleigh waves on a plane boundary, Rayleigh waves on a cylindrical surface, Love waves, Stoneley waves (solid/solid and fluid/solid interface). In the second part of the article we discuss two two-component models of porous materials (Biot’s model and a simple mixture model). We indicate basic differences of the models and demonstrate qualitative similarities. We introduce as well some fundamental notions yielding the description of surface waves in two-component systems (saturated porous materials) and review certain (porous materials with impermeable boundaries) asymptotic results for such waves. However, the full discussion of this subject including numerous results of computer calculations can be found in the article of B. Albers (2005) also included in this volume.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • J. D. Achenbach. Wave propagation in elastic solids. North-Holland Publ. Comp., Amsterdam, 1973.

    MATH  Google Scholar 

  • K. Aki and P. G. Richards. Quantitative seismology. University Science Books, Sansalito, second edition edition, 2002.

    Google Scholar 

  • B. Albers. Modelling of surface waves in poroelastic saturated materials by means of a two-component continuum. In C. Lai and K. Wilmanski, editors, Surface Waves in Geomechanics, Direct and Inverse Modelling for Soils and Rocks, CISM Courses and Lectures. Springer Verlag, Wien-New York, 2005.

    Google Scholar 

  • B. Albers and K. Wilmanski. On modeling acoustic waves in saturated poroelastic media. Preprint 874, WIAS, 2003. to appear in: J. Engn. Mech., 2004.

    Google Scholar 

  • J. F. Allard. Propagation of Sound in Porous Media. Modelling Sound Absorbing Materials. Elsevier, Essex, 1993.

    Google Scholar 

  • J. H. Ansell. The roots of the stoneley wave equation for solid-liquid interfaces. Pure Appl. Geophys., 94:172–188, 1972.

    Article  Google Scholar 

  • E. A. Ash and E. G. S. Paige. Rayleigh-Wave theory and application. Springer, Berlin, 1985.

    Google Scholar 

  • A. Ben-Menahem and S. J. Singh. Seismic waves and sources. Springer-Verlag, Dover, New York, second edition, 2000.

    MATH  Google Scholar 

  • J. G. Berryman. Confirmation of Biot’s theory. Appl Phys. Lett, 37:382–384, 1980.

    Article  Google Scholar 

  • M. A. Biot. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am., 28:168–178, 1956.

    Article  MathSciNet  Google Scholar 

  • M. A. Biot and D. G. Willis. The elastic coefficients of the theory of consolidation. J. Appl Mech., 24:594–601, 1957.

    MathSciNet  Google Scholar 

  • T. Bourbie, O. Coussy, and B. Zinszner. Acoustics of porous media. Éditions Technip, Paris, 1987.

    Google Scholar 

  • L. M. Brekhovskikh and O. A. Godin. Acoustics of layered media. I. Plane and quasi-plane waves. Springer, Berlin, 1998.

    Google Scholar 

  • L. M. Brekhovskikh and V. Goncharov. Mechanics of continua and wave dynamics. Springer, Berlin, second edition, 1994.

    MATH  Google Scholar 

  • L. Cagniard. Reflection and refraction of progressive waves. McGraw-Hill Book Co., 1962.

    Google Scholar 

  • C. A. Coulson and A. Jeffrey. Waves; A mathematical approach to the common types of wave motion. Longman, London, second edition, 1977.

    Google Scholar 

  • H. Deresiewicz. The effect of boundaries on wave propagation in a liquid-filled porous solid: II. Love waves in a porous layer. Bull Seismol Soc. Am., 51(1):51–59, 1961.

    MathSciNet  Google Scholar 

  • H. Deresiewicz. The effect of boundaries on wave propagation in a liquid-filled porous solid: IV. Surface waves in a half-space. Bull Seismol Soc. Am., 52(3):627–638, 1962.

    Google Scholar 

  • H. Deresiewicz. The effect of boundaries on wave propagation in a liquid-filled porous solid: VI. Love waves in a double surface layer,. Bull Seismol. Soc. Am., 54:417–423, 1964a.

    Google Scholar 

  • H. Deresiewicz. The effect of boundaries on wave propagation in a liquid filled porous solid. VII. Surface waves in a half space in the presence of a liquid layer. Bull Seismol. Soc. Am., 54(1):425–430, 1964b.

    Google Scholar 

  • H. Deresiewicz and R. Skalak. On uniqueness in dynamic poroelasticity. Bull. Seismol. Soc. Am., 53:783–788, 1963.

    Google Scholar 

  • D. Drew, L. Cheng, and R. T. Lahey Jr. The analysis of virtual mass effects in two-phase flow. Int. J. Multiphase Flow, 5:233–242, 1979.

    Article  MATH  Google Scholar 

  • I. Edelman. Bifurcation of the Biot slow wave in a porous medium. J. Acoust. Soc. Am., 114(1):90–97, 2003.

    Article  MathSciNet  Google Scholar 

  • I. Edelman and K. Wilmanski. Asymptotic analysis of surface waves at vacuum/porous medium and liquid/porous medium interfaces. Contin. Mech. Thermodyn., 14(1):25–44, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  • W. C. Elmore and M. A. Heald. Physics of waves. Dover, New York, 1985.

    Google Scholar 

  • S. Feng and D. L. Johnson. High-frequency acoustic properties of a fluid/porous solid interface. I. New surface mode. J. Acoust. Soc. Am., 74(3):906–914, 1983.

    Article  MATH  Google Scholar 

  • S. Foti. Surface wave testing for geotechnical characterization of a real site. In C. Lai and K. Wilmanski, editors, Surface Waves in Geomechanics, Direct and Inverse Modelling for Soils and Rocks, CISM Courses and Lectures. Springer Verlag, Wien-New York, 2005.

    Google Scholar 

  • Ya. Frenkel. On the theory of seismic and seismoelectric phenomena in moist soils. J. Phys., 8(4):230–241, 1944.

    MathSciNet  Google Scholar 

  • F. Gassmann. Über die Elastizität poröser Medien. Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich, 96:1–23, 1951.

    MathSciNet  Google Scholar 

  • A. S. Ginzbarg and E Strick. Stoneley-wave velocities for a solid-solid interface. Bull. Seismol. Soc. Am., 48:51–63, 1958.

    Google Scholar 

  • P. Hess. Surface acousic waves in materials science. Physics Today, March:42–47, 2002.

    Google Scholar 

  • D. L. Johnson, T. J. Plona, C. Scala, F. Pasierb, and H. Kojima. Tortuosity and acoustic slow waves. Phys. Rev. Lett., 49:1840–1844, 1982.

    Article  Google Scholar 

  • E. Kausel. Do complex rayleigh modes really exist? private communication, 2004.

    Google Scholar 

  • E. Kausel. Numerical technics in eigenvalue problems for surface waves. In C. Lai and K. Wilmanski, editors, Surface Waves in Geomechanics, Direct and Inverse Modelling for Soils and Rocks, CISM Courses and Lectures. Springer Verlag, Wien-New York, 2005.

    Google Scholar 

  • H. Kolsky. Stress waves in solids. Clarendon Press, Oxford, 1953.

    MATH  Google Scholar 

  • R. Kumar and A. Miglani. Effect of pore alignment on surface wave propagation in a liquid-saturated porous layer over a liquid-saturated porous half-space with loosely bonded interface. J. Phys. Earth, 44:153–172, 1996.

    Google Scholar 

  • R. Kumar, A. Miglani, and N. R. Garg. Surface wave propagation in a double liquid layer over a liquid-saturated porous half-space. Sādhanā, 27(6):643–655, 2002.

    MATH  Google Scholar 

  • C. G. Lai. Simultaneous inversion of Rayleigh phase velocity and attenuation for near-surface site characterization. PhD thesis, Georgia Institute of Technology, 1998.

    Google Scholar 

  • C. G. Lai. Surface waves in dissipative media: Forward and inverse modelling. In C. Lai and K. Wilmanski, editors, Surface Waves in Geomechanics, Direct and Inverse Modelling for Soils and Rocks, CISM Courses and Lectures. Springer Verlag, Wien-New York, 2005.

    Google Scholar 

  • R. Lancellotta. Experimental soil behavior, its testing by waves, engineering applications. In C. Lai and K. Wilmanski, editors, Surface Waves in Geomechanics, Direct and Inverse Modelling for Soils and Rocks, CISM Courses and Lectures. Springer Verlag, Wien-New York, 2005.

    Google Scholar 

  • G. Liu and J. Qu. Guided circumferential waves in a circular annulus. J. Appl. Mech., 65:424–430, 1998.

    Google Scholar 

  • I-Shih Liu. Continuum Mechanics. Springer, Berlin, 2002.

    MATH  Google Scholar 

  • A. E. H. Love. Some problems of geodynamics. Cambridge University Press, 1911. reprinted by Dover, N.Y., 1967.

    Google Scholar 

  • G. Maugin. Theory of nonlinear surface waves and solitons. In C. Lai and K. Wilmanski, editors, Surface Waves in Geomechanics, Direct and Inverse Modelling for Soils and Rocks, CISM Courses and Lectures. Springer Verlag, Wien-New York, 2005.

    Google Scholar 

  • I. Müller. A new approach to thermodynamics of simple mixtures. Zeitschrift für Naturforschung, 28a, 1973.

    Google Scholar 

  • I. Müller. Thermodynamics. Pitman, Boston, 1985.

    MATH  Google Scholar 

  • E. G. Nesvijski. On a possibility of Rayleigh transformed sub-surface waves propagation. NDT.net, 5(09), September 2000.

    Google Scholar 

  • A. N. Norris. Back reflection of ultrasonic waves from a liquid-solid interface. J. Acoust. Soc. Am., 73(2):427–434, 1983.

    Article  MATH  Google Scholar 

  • A. N. Norris. Stoneley-wave attenuation and dispersion in permeable formations. Geophysics, 54(3):330–341, 1989.

    Article  Google Scholar 

  • A. N. Norris and B. K. Sinha. The speed of a wave along a fluid/solid interface in the presence of anisotropy and prestress. J. Acoust. Soc. Am, 98(2):1147–1154, 1995.

    Article  Google Scholar 

  • D. F. Parker and G. A. Maugin. Recent developments in surface acoustic waves. Springer, Berlin, 1988.

    MATH  Google Scholar 

  • R. A. Phinney. Propagation of leaking interface waves. Bull. Seismol. Soc. Am., 51(4):527–555, 1961.

    MathSciNet  Google Scholar 

  • T. J. Plona. Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies. Appl Phys. Lett, 36:259–261, 1980.

    Article  Google Scholar 

  • J. W. (Strutt) Rayleigh. On waves propagated along the plane surface of an elastic solid. Proc. London Math. Soc, 17:4–11, 1887.

    Google Scholar 

  • G. J. Rix. Surface testing for near-surface site characterization. In C. Lai and K. Wilmanski, editors, Surface Waves in Geomechanics, Direct and Inverse Modelling for Soils and Rocks, CISM Courses and Lectures. Springer Verlag, Wien-New York, 2005.

    Google Scholar 

  • G. J. Rix, C. G. Lai, and S. Foti. Simultaneous measurement of surface wave dispersion and attenuation curves. Geotechnical Testing Journal, 24(4):350–358, 2001.

    Article  Google Scholar 

  • H. Sato and M. Fehler. Seismic wave propagation and scattering in the heterogeneous earth. Springer, New York, 1998.

    Google Scholar 

  • J. G. Scholte. On seismic waves in a spherical earth. Koninkl. Ned. Meteorol. Inst., pages 122–165, 1947a.

    Google Scholar 

  • J. G. Scholte. The range of existence of Rayleigh and Stoneley waves. Monthly Notices of the Royal Astronomical Society, Geophysical Supplement, 5:120–126, 1947b.

    MathSciNet  Google Scholar 

  • C. T. Schroeder and W. R. Scott. A finite-difference model to study the elastic-wave interactions with buried land mines. IEEE Trans. Geosci. Remote Sensing, 38(4): 1505–1512, 2000.

    Article  Google Scholar 

  • C. T. Schroeder and W. R. Scott. On the complex conjugate roots of the Rayleigh equation: The leaky surface wave. J. Acoust. Soc. Am., 110(6):2867–2877, 2001.

    Article  Google Scholar 

  • M. D. Sharma, R. Kumar, and M. L. Gogna. Surface wave propagation in a transversely isotropic elastic layer overlying a liquid-saturated porous solid half-space and lying under a uniform layer of liquid. Pure Appl Geophys., 133:523–540, 1990.

    Article  Google Scholar 

  • M. D. Sharma, R. Kumar, and M. L. Gogna. Surface wave propagation in a liquid-saturated porous layer overlying a homogeneous transversely isotropic half-space and lying under a uniform layer of liquid. Int. J. Solids Struct., 27:1255–1267, 1991.

    Article  MATH  Google Scholar 

  • R. D. Stoll. Sediment Acoustics. Number 26 in Lecture Notes in Earth Sciences. Springer, New York, 1989.

    Google Scholar 

  • R. Stoneley. Elastic waves at the surface of separation of two solids. Proc. Roy. Soc. London, Ser. A, 106:416–428, 1924.

    Google Scholar 

  • E. Strick. The pseudo-Rayleigh wave. In W. L. Roever, T. F. Vining, and E. Strick, editors, On the propagation of elastic wave motion, volume 251 of Phil. Trans. Roy. Soc. (London), Ser. A, pages 488–509. Royal Society, 1959.

    Google Scholar 

  • E. Strick and A. S. Ginzbarg. Stoneley-wave velocities for a fluid-solid interface. Bull. Seismol. Soc. Am., 46:281–292, 1956.

    Google Scholar 

  • I. Tolstoy, editor. Acoustics, Elasticity and Thermodynamics of Porous Media: Twenty-one papers by M. A. Biot. Acoustical Society of America, 1991.

    Google Scholar 

  • J. Trefil. A scientist at the seashore. Macmillan Publ. Co., New York, 1984.

    Google Scholar 

  • A. Udias. Principles of Seismology. Cambridge University Press, 1999.

    Google Scholar 

  • C. Valle, J. Qu, and L. J. Jacobs. Guided circumferential waves in layered cylinders. Int. J. Engn. Sci., 37:1369–1387, 1999.

    Article  Google Scholar 

  • I. A. Viktorov. Rayleigh-type waves on curved surfaces. J. Acoust. Soc. Am., 4:131–136, 1958a.

    Google Scholar 

  • I. A. Viktorov. Wolny tipa relejewskich na cilindricheskich powierchnostiach. Akust. Zurnal, 4(2): 131–136, 1958b. (in Russian).

    Google Scholar 

  • I. A. Viktorov. Rayleigh and Lamb waves. Physical theory and applications. Plenum Press, New York, 1967.

    Google Scholar 

  • I. A. Viktorov. Zwukovyje powierchnostnyje wolny w twiordych telach. Nauka, Moskwa, 1981. (in Russian).

    Google Scholar 

  • J. E. White. Underground sound, application of seismic waves. Elsevier Sci. Publ., New York, 1983.

    Google Scholar 

  • R. M. White. Surface elastic waves. Proc. IEEE, 58(8): 1238–1276, 1970.

    Article  Google Scholar 

  • G. B. Whitham. Linear and nonlinear waves. John Wiley & Sons, New York, 1974.

    MATH  Google Scholar 

  • K. Wilmanski. A thermodynamic model of compressible porous materials with the balance equation of porosity. Transp. Porous Media, 32:21–47, 1998a.

    Article  Google Scholar 

  • K. Wilmanski. Thermomechanics of continua. Springer, Berlin, 1998b.

    MATH  Google Scholar 

  • K. Wilmanski. Waves in porous and granular materials. In K. Hutter and K. Wilmanski, editors, Kinetic and continuum theories of granular and porous media, number 400 in CISM Courses and Lectures, pages 131–186. Springer, Wien New York, 1999.

    Google Scholar 

  • K. Wilmanski. Some questions on material objectivity arising in models of porous materials. In P. Podio-Guidugli and M. Brocato, editors, Rational Continua, Classical and New. A collection of 7 papers dedicated to G. Capriz, pages 149–161. Springer-Italy, Milan, 2001a.

    Google Scholar 

  • K. Wilmanski. Thermodynamics of multicomponent continua. In R. Teisseyre and E. Majewski, editors, Earthquake Thermodynamics and Phase Transformations in the Earth’s Interior, volume 76 of International Geophysics Series, chapter 25, pages 567–656. Academic Press, San Diego, 2001b.

    Google Scholar 

  • K. Wilmanski. Propagation of sound and surface waves in porous materials. In B. T. Maruszewski, editor, Structured Media, pages 312–326. Publishing House of Poznan University of Technology, 2002a.

    Google Scholar 

  • K. Wilmanski. Thermodynamical admissibility of Biot’s model of poroelastic saturated materials. Arch. Mech., 54(5–6):709–736, 2002b.

    MATH  MathSciNet  Google Scholar 

  • K. Wilmanski. On a micro-macro transition for poroelastic Biot’s model and corresponding Gassmann-type relations. Preprint 868, WIAS, 2003. to appear in: Géotechnique, 2004.

    Google Scholar 

  • K. Wilmanski. Tortuosity and objective relative acceleration in the theory of porous materials. Preprint 922, WIAS, 2004. to appear in: Proc. Royal Soc. (London), Ser. A, 2004.

    Google Scholar 

  • K. Wilmanski and B. Albers. Acoustic waves in porous solid-fluid mixtures. In K. Hutter and N. Kirchner, editors, Dynamic response of granular and porous materials under large and catastrophic deformations, volume 11 of Lecture Notes in Applied and Computational Mechanics, pages 283–313. Springer, Berlin, 2003.

    Google Scholar 

  • Yan Qing Zeng and Qing Huo Liu. Acoustic detection of buried objects in 3-D fluid saturated porous media: Numerical modeling. IEEE Transactions on Geoscience and Remote Sensing, 39(6):1165–1173, 2001a.

    Article  Google Scholar 

  • Yan Qing Zeng and Qing Huo Liu. A staggered-grid finite-difference method with perfectly matched layers for poroelastic wave equations. J. Acoust. Soc. Am., 109(6): 2571–2580, 2001b.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 CISM, Udine

About this chapter

Cite this chapter

Wilmański, K. (2005). Elastic modelling of surface waves in single and multicomponent systems. In: Lai, C.G., Wilmański, K. (eds) Surface Waves in Geomechanics: Direct and Inverse Modelling for Soils and Rocks. CISM International Centre for Mechanical Sciences, vol 481. Springer, Vienna. https://doi.org/10.1007/3-211-38065-5_5

Download citation

  • DOI: https://doi.org/10.1007/3-211-38065-5_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-27740-9

  • Online ISBN: 978-3-211-38065-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics