Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 416))

  • 1224 Accesses

Abstract

This contribution is concerned with the adaptive finite-element-formulation of contact problems. For this, first the theoretical background of continuum mechanics and contact kinematics is given. Next the basic finite element formulation for large deformation contact processes is presented for two-dimensional problems. The development of the discretization of contact contributions follows. Here standard approaches are discussed for the case of frictional and frictionless contact. Finally different adaptive strategies involving as well residual based error estimators as error indicators based on superconvergence patch recovery are derived and formulated to include the contributions due to contact. Also error estimators based on dual principles are discussed. Examples show the performance of the different formulations and adaptive strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Alart. P. and Curnier. A. (1991). A mixed formulation for frictional contact problems prone to Newton like solution methods. Computer Methods in Applied Mechanics and Engineering. 92:353–375.

    Article  MATH  MathSciNet  Google Scholar 

  • Babuska. I. and Miller. A. (1987). A feedback finite element method with a posteriori error estimation: Part i. the finite element method and some basic properties of the a posteriori error estimation. Computer Methods in Applied Mechanics and Engineering, 61:1–40.

    Article  MATH  MathSciNet  Google Scholar 

  • Babuska, I. and Rheinboldt, W. (1978). Error estimates for adaptive finite element computations. SIAM Journal on Numerical Analysis, 15:736–754.

    Article  MATH  MathSciNet  Google Scholar 

  • Babuska, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K., and Copps, K. (1994). Validation of a posteriori error estimators by numerical approach. International Journal for Numerical Methods in Engineering, 37:1073–1123.

    Article  MATH  MathSciNet  Google Scholar 

  • Barthold, F. J. and Bischoff, D. (1988). Generalization of Newton type methods to contact problems with friction. Journal Mec. Theor. Appl, pages 97–110.

    Google Scholar 

  • Bathe, K. J. (1986). Finite-Elemente-Methoden, Matrizen und lineare Algebra. Die Meth-ode der finiten Elemente. L”osung von Gleichgewichtsbedingungen und Bewegungsgleichungen; Deutsche ”Ubersetzung von P. Zimmermann. Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  • Bathe, K. J. and Chaudhary, A. B. (1985). A solution method for planar and axisymmetric contact problems. International Journal for Numerical Methods in Engineering, 21:65–88.

    Article  MATH  Google Scholar 

  • Becker, R. and Rannacher, R. (1996). A feed-back approach to error control in finite element methods: Basic analysis and examples. EAST-WEST J. Numerical Mathematics, 4:237–264.

    MATH  MathSciNet  Google Scholar 

  • Bertsekas, D. P. (1984). Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New York.

    Google Scholar 

  • Björkman, G., Klarbring, A., Sjödin, B., Larsson, T., and Rönnqvist, M. (1995). Sequential quadratic programming for non-linear elastic contact problems. International Journal for Numerical Methods in Engineering, 38:137–165.

    Article  MATH  Google Scholar 

  • Carstensen, C, Scherf, O., and Wriggers, P. (1999). Adaptive finite elements for elastic bodies in contact. SIAM Journal of Scientific Computing, 20:1605–1626.

    Article  MATH  MathSciNet  Google Scholar 

  • Ciarlet, P. G. (1988). Mathematical Elasticity I: Three-dimensional Elasticity. North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Crisfield, M. A. (1991). Non-linear Finite Element Analysis of Solids and Structures, volume 1. Wiley, Chichester.

    Google Scholar 

  • Curnier, A. and Alart, P. (1988). A generalized newton method for contact problems with friction. J. Mec. Theor. Appl, 7:67–82.

    MathSciNet  Google Scholar 

  • Curnier, A., He, Q. C., and Telega, J. J. (1992). Formulation of unilateral contact between two elastic bodies undergoing finite deformation. C. R. Acad. Sci. Paris, 314:1–6.

    MATH  Google Scholar 

  • Duvaut, G. and Lions, J. L. (1976). Inequalities in Mechanics and Physics. Springer Verlag, Berlin.

    MATH  Google Scholar 

  • Francavilla, A. and Zienkiewicz, O. C. (1975). A note on numerical computation of elastic contact problems. International Journal for Numerical Methods in Engineering, 9:913–924.

    Article  Google Scholar 

  • Giannokopoulos, A. E. (1989). The return mapping method for the integration of friction constitutive relations. Computers and Structures, 32:157–168.

    Article  Google Scholar 

  • Glowinski, R. and Le Tallec, P. (1984). Finite element analysis in nonlinear incompressible elasticity. In Finite Element, Vol. V: Special Problems in Solid Mechanics. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Hallquist, J. O., Goudreau, G. L., and Benson, D. J. (1985). Sliding interfaces with contact-impact in large-scale lagrange computations. Computer Methods in Applied Mechanics and Engineering, 51:107–137.

    Article  MATH  MathSciNet  Google Scholar 

  • Hallquist, J. O., Schweizerhof, K., and Stillman, D. (1992). Efficiency refinements of contact strategies and algorithms in explicit fe programming. In Owen, D. R. J., Hinton, E., and Onate, E., editors, Proceedings of COMF1 AS III, pages 359–384. Pineridge Press.

    Google Scholar 

  • Hansson, E. and Klarbring, A. (1990). Rigid contact modelled by CAD surface. Engineering Computations. 7:344–348.

    Google Scholar 

  • Heegaard, J.-H. and Curnier, A. (1993). An augmented Lagrange method for discrete large-slip contact problems. International Journal for Numerical Methods in Engineering, 36:569–593.

    Article  MATH  MathSciNet  Google Scholar 

  • Hlavacek, I., Haslinger, J., Necas, J., and Lovisek, J. (1988). Solution of Variational Inequalities in Mechanics. Springer-Verlag, Berlin, New York.

    MATH  Google Scholar 

  • Hughes, T. R. J., Taylor, R. L., and Kanoknukulchai, W. (1977). A finite element method for large displacement contact and impact problems. In Bathe, K. J., editor, Formulations and Computational Algorithms in FE Analysis, pages 468–495, Boston. MIT Press.

    Google Scholar 

  • Johnson, C. (1987). Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press.

    Google Scholar 

  • Johnson, C. (1991). Adaptive finite element methods for the obstacle problem. Technical report, Chalmers University of Technology, Göteborg.

    Google Scholar 

  • Johnson, C. and Hansbo, P. (1992). Adaptive finite element methods in computational mechanics. Computer Methods in Applied Mechanics and Engineering, 101:143–181.

    Article  MATH  MathSciNet  Google Scholar 

  • Ju, W. and Taylor, R. L. (1988). A perturbed lagrange formulation for the finite element solution of nonlinear frictional contact problems. Journal of Theoretical and Applied Mechanics, 7:1–14.

    Google Scholar 

  • Kikuchi, N. and Oden, J. T. (1988). Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia.

    MATH  Google Scholar 

  • Klarbring, A. (1986). A mathematical programming approach to three-dimensional contact problems with friction. Computer Methods in Applied Mechanics and Engineering, 58:175–200.

    Article  MATH  MathSciNet  Google Scholar 

  • Laursen, T. A. and Simo, J. C. (1993). A continuum-based finite element formulation for the implicit solution of multibody, large deformation frictional contact problems. International Journal for Numerical Methods in Engineering, 36:3451–3485.

    Article  MATH  MathSciNet  Google Scholar 

  • Lee, C. Y., Oden, J. T., and Ainsworth, M. (1991). Local a posteriori error estimates and numerical results for contact problems and problems of flow through porous media. In Wriggers, P. and Wagner, W., editors, Computational Methods in Nonlinear Mechanics, pages 671–689, Berlin. Springer.

    Google Scholar 

  • Luenberger, D. G. (1984). Linear and Nonlinear Programming. Addison-Wesley, Reading, Mass., second edition.

    MATH  Google Scholar 

  • Oden, J. T. (1981). Exterior penalty methods for contact problems in elasticity. In Wunderlich, W., Stein, E., and Bathe, K. J., editors, Nonlinear Finite Element Analysis in Structural Mechanics, Berlin. Springer.

    Google Scholar 

  • Ortiz, M. and Quigley, J. J. (1991). Adaptive mesh refinement in strain localization problems. Computer Methods in Applied Mechanics and Engineering, 90:781–804.

    Article  Google Scholar 

  • Papadopoulos, P. and Taylor, R. L. (1992). A mixed formulation for the finite element solution of contact problems. Computer Methods in Applied Mechanics and Engineering, 94:373–389.

    Article  MATH  Google Scholar 

  • Parisch, H. (1989). A consistent tangent stiffness matrix for three-dimensional nonlinear contact analysis. International Journal for Numerical Methods in Engineering, 28:1803–1812.

    Article  MATH  Google Scholar 

  • Ramm, E. and Cirak, F. (1997). Adaptivity for nonlinear thin-walled structures. In Owen, D. R. J., Hinton, E., and Onate, E., editors, Proceedings of COMPLAS 5, pages 145–163, Barcelona. CIMNE.

    Google Scholar 

  • Rannacher, R. and Suttmeier, F. T. (1997). A posteriori error control in finite element methods via duality techniques: Application to perfect plasticity. Technical Report 97-16, Institut for Applied Mathematics, SFB 359, University of Heidelberg.

    Google Scholar 

  • Rheinboldt, W. (1985). Error estimates for nonlinear finite element computations. Computers and Structures, 20:91–98.

    Article  MATH  MathSciNet  Google Scholar 

  • Schöberl, J.. (1997). Netgen — an advancing front 2d/3d mesh generator based on abstract rules. Computer Visualization Science, 1:41–52.

    Article  MATH  Google Scholar 

  • Simo, J. C. and Laursen. T. A. (1992). An augmented Lagrangian treatment of contact problems involving friction. Computers and Structures, 42:97–116.

    Article  MATH  MathSciNet  Google Scholar 

  • Simo. J. C. and Taylor. R. L. (1985). Consistent tangent operators for rate-independent elastoplasticity. Computer Methods in Applied Mechanics and Engineering, 48:101–118.

    MATH  Google Scholar 

  • Simo, J. C, Wriggers, P., and Taylor, R. L. (1985). A perturbed Lagrangian formulation for the finite element solution of contact problems. Computer Methods in Applied Mechanics and Engineering. 50:163–180.

    Article  MATH  MathSciNet  Google Scholar 

  • Sloan. S. W. (1987). A fast algorithm for constructing delaunay triangularization in the plane. Adv. Eng. Software, 9:34–55.

    MATH  Google Scholar 

  • Stadter, J. T. and Weiss, R. O. (1979). Analysis of contact through finite element gaps. Computers and Structures, 10:867–873.

    Article  MATH  Google Scholar 

  • Stein. E.. Seifert. B.. Ohnimus. S.. and Carstensen, C. (1994). Adaptive finite element analysis of geometrically nonlinear plates and shells, especially buckling. International Journal for Numerical Methods in Engineering, 37:2631–2655.

    Article  MATH  MathSciNet  Google Scholar 

  • Strang, G. and Fix, G. J. (1973). An Analysis of the Finite Element Method. Prentice-Hall, Inc., Englewood Cliffs.

    MATH  Google Scholar 

  • Verfürth, R. (1996). A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley, Teubner, Chichester, New York, Stuttgart, Leipzig.

    MATH  Google Scholar 

  • Wriggers. P. (1987). On consistent tangent matrices for frictional contact problems. In Pande. G. and Middleton. J., editors. Proceedings of NUMETA 87, Dordrecht. M. Nijhoff Publishers.

    Google Scholar 

  • Wriggers, P. (2001). Nichtlineare Finite Elemente. Springer, Berlin.

    Google Scholar 

  • Wriggers, P. and Imhof. M. (1993). On the treatment of nonlinear unilateral contact problems. Ing. Archiv, 63:116–129.

    MATH  Google Scholar 

  • Wriggers, P. and Miehe, C. (1992). On the treatment of contact contraints within coupled thermomechanical analysis. In Besdo, D. and Stein, E., editors, Proc. of EUROMECH, Finite Inelastic Deformations, Berlin. Springer.

    Google Scholar 

  • Wriggers, P. and Miehe, C. (1994). Contact constraints within coupled thermomechanical analysis-a finite element model. Computer Methods in Applied Mechanics and Engineering, 113:301–319.

    Article  MATH  MathSciNet  Google Scholar 

  • Wriggers. P.. Rieger. A., and Scherf. O. (2000). Comparison of different error measures for adaptive finite element techniques applied to contact problems involving large elastic strains. Computer Methods in Applied Mechanics and Engineering.

    Google Scholar 

  • Wriggers. P. and Scherf. O. (1997). Adaptive methods for contact problems. In Gastecki, A., editor. Proceedings of PCCMM XIII, Poznan.

    Google Scholar 

  • Wriggers, P. and Scherf, O. (1998). Different a posteriori error estimators and indicators for contact problems. Mathematics and Computer Modelling, 28:437–447.

    Article  MATH  MathSciNet  Google Scholar 

  • Wriggers, P., Scherf, O., and Carstensen, C. (1994). Adaptive techniques for the contact of elastic bodies. In Hughes, J., Onate, E., and Zienkiewicz, O., editors, Recent Developments in Finite Element Analysis, pages 78–86, Barcelona. CIMNE.

    Google Scholar 

  • Wriggers, P. and Simo, J. (1985). A note on tangent stiffnesses for fully nonlinear contact problems. Communications in Applied Numerical Methods, 1:199–203.

    Article  MATH  Google Scholar 

  • Wriggers, P., Simo, J., and Taylor, R. (1985). Penalty and augmented lagrangian formulations for contact problems. In Middleton, J. and Pande, G., editors, Proceedings of NUMETA Conference, Rotterdam. Balkema.

    Google Scholar 

  • Wriggers, P., Van, T. V., and Stein, E. (1990). Finite-element-formulation of large deformation impact-contact-problems with friction. Computers and Structures, 37:319–333.

    Article  MATH  Google Scholar 

  • Wriggers, P. and Zavarise, G. (1993a). On the application of augmented lagrangian techniques for nonlinear constitutive laws in contact interfaces. Communications in Applied Numerical Methods, 9:815–824.

    Article  MATH  Google Scholar 

  • Wriggers, P. and Zavarise, G. (1993b). Thermomechanical contact — a rigorous but simple numerical approach. Computers and Structures, 46:47–53.

    Article  Google Scholar 

  • Zienkiewicz, O. C. and Taylor, R. L. (1989). The Finite Element Method, 4th Ed., volume 1. McGraw Hill, London.

    Google Scholar 

  • Zienkiewicz, O. C. and Taylor, R. L. (1991). The Finite Element Method, 4th Ed., volume 2. McGraw Hill, London.

    Google Scholar 

  • Zienkiewicz, O. C. and Zhu, J. Z. (1987). A simple error estimator and adaptive procedure for practical engineering analysis. International Journal for Numerical Methods in Engineering, 24:337–357.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 CISM, Udine

About this chapter

Cite this chapter

Wriggers, P. (2005). Adaptive Methods for Contact Problems. In: Stein, E. (eds) Adaptive Finite Elements in Linear and Nonlinear Solid and Structural Mechanics. CISM International Centre for Mechanical Sciences, vol 416. Springer, Vienna. https://doi.org/10.1007/3-211-38060-4_6

Download citation

  • DOI: https://doi.org/10.1007/3-211-38060-4_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-26975-6

  • Online ISBN: 978-3-211-38060-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics