Skip to main content

Hierarchical Model and Solution Adaptivity of Thin-walled Structures by the Finite-Elements-Method

  • Chapter

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 416))

Abstract

Hierarchical discretization and model adaptivity is achieved by locally computed quantitative (absolute) global error estimators with strict upper bounds for the discretization error of the FE-solution with respect to the boundary value problem of the current mathematical model and also for a model within a nested sequence of models from lower to higher complexity for dimensions, kinematics and material behavior in order to account for boundary layers, stress concentrations, stiffness jumps etc. as well as for changes of material behavior (e.g. from elastic to elastoplastic deformations).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ainsworth and J.T. Oden. A procedure for a posteriori error estimation for h-p finite element methods. Computer Methods in Applied Mechanics and Engineering, 101:73–96, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Ainsworth and J.T. Oden. A posteriori error estimation in finite element analysis. Mathematics and computer science technical reports, University of Leicester, 1995.

    Google Scholar 

  3. N. Apel. Formulierung und Implementierung ernes Schalenelementes mit endlichen Rotationen unter C++, sowie eines Übergangselementes zu 3d-Kontinuumselementen mit hierarchischen Ansatzfunktionen und beliebiger p-Ordnung in Hinblick auf parallele FE-Berechnungsverfahren. diploma thesis, Hanover, Nov. 1998, 1998.

    Google Scholar 

  4. I. Babuška. Some aspects of the h and hp version of the finite element method. Numerical Methods in Engineering Theory and Applications, 1987.

    Google Scholar 

  5. I. Babuška and W.C. Rheinboldt. Error estimates for adaptive finite element computations. SIAM Journal on Numerical Analysis, 15:736–754, 1978.

    Article  MathSciNet  Google Scholar 

  6. I. Babuška and A. Miller. A-posteriori error estimates and adaptive techniques for the finite element method. Technical report, Institute for Physical Science and Technology, University of Maryland, 1981.

    Google Scholar 

  7. I. Babuška, T. Strouboulis, S.K. Gangaraj, and C.S. Upadhyay. A posteriori estimation and adaptive control of the pollution error in the h-version of the finite element method. International Journal for Numerical Methods in Engineering, 38:4207–4235, 1995.

    Article  MathSciNet  Google Scholar 

  8. R. E. Bank and A. Weiser. Some a posteriori error estimators for elliptic partial differential equations. Mathematics of Computation, 44:283–301, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  9. F.-J. Barthold, M. Schmidt, and E. Stein. Error estimation and mesh adaptivity for elasto-plastic deformations. Computational Plasticity, Proceedings of the fifth International Conference on Computational Plasticity COMPLAS V, CIMNE, 10th–17th March 1997, Barcelona, Spain, edited by D.R.L Owen, E. Onate and E. Hinton, Part 1:597–602, 1997.

    Google Scholar 

  10. F.-J. Barthold, M. Schmidt and E. Stein. Error indicators and mesh refinements for finite elements computations of elastoplastic deformations. Computational Mechanics, 22:225–238, 1998.

    Article  MATH  Google Scholar 

  11. F.-J. Barthold and E. Stein. Error estimation and mesh adaptivity for elasto-plastic deformations. ZAMM: Proc. ICIAM/GAMM, 76Sup. 1:159–162, 1996.

    MATH  Google Scholar 

  12. D. Braess, O. Klaas, R. Niekamp, E. Stein, and F. Wobschal. Error indicators for mixed finite elements in 2-dimensional linear elasticity. Computer Methods in Applied Mechanics and Engineering, 127:345–356, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  13. U. Brink. Adaptive gemischte finite Elemente in der linearen finiten Elastostatik und deren Kopplung mit Randelementen. Institut für Baumechanik und Numerische Mechanik, Dissertation Unwersität Hannover IBNM-Bericht, F98/1, 1997.

    Google Scholar 

  14. U. Brink and E. Stein. A-posteriori error estimation in large-strain elasticity using equilibrated local Neumann problems. Computer Methods in Applied Mechanics and Engineering, 161(l–2):77–101, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Buch, A. Idesman, R. Niekamp, and E. Stein. Finite elements in space and time for parallel computing of viscoelastic deformations. Computational Mechanics, 24:386–395, 1999.

    Article  MATH  Google Scholar 

  16. H. Bufler and E. Stein. Zur Plattenberechnung mittels finiter Elemente. Ing. Archiv, 39:248–260, 1970.

    Article  MATH  Google Scholar 

  17. J. Fish and S. Markolefas. Adaptive global-local refinement strategy based on the interior error estimates of the h-method. International Journal for Numerical Methods in Engineering, 37:827–838, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  18. L. Gallimard, P. Ladevèze, and J. P. Pelle. Error estimation and adaptivity in elasto-plasticity. International Journal for Numerical Methods in Engineering, 39:189–217, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  19. W. Hackbusch. Multi-grid method and applications. Springer Series in Computational Mathematics, Springer-Verlag, Berlin Heidelberg New York Tokyo, 4, 1985.

    Google Scholar 

  20. W. Hackbusch. Integralgleichungen, Theorie und Numerik. Teubner Studienbücher, Mathematik, ISBN 3-519-02370-9, 1989.

    Google Scholar 

  21. H. Hencky. Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nebenspannungen. In Proceedings of the 1st International Congress on Applied Mechanics, Delft, 1924.

    Google Scholar 

  22. A. Idesman, R. Niekamp, and E. Stein. Continuous and discontinous galerkin method with finite elements in space and time for parallel computing of viscoelastic deformation. Computer Methods in Applied Mechanics and Engineering, 190:1049–1063, 2000.

    Article  MATH  Google Scholar 

  23. C. Johnson and P. Hansbo. Adaptive finite element methods in computational mechanics. Computer Methods in Applied Mechanics and Engineering, 101:143–181, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  24. O. Klaas, J. Schröder, E. Stein, and C. Miehe. A regularized mixed element for plane elasticity, implementation and performance of the BDM element. IBNM-Bericht 93 / 6, Institut für Baumechanik und Numerische Mechanik, Universität Hannover, 1993.

    Google Scholar 

  25. P. Ladevèze and D. Leguillon. Error estimate procedure in the finite element method and applications. SIAM J. Num. Anal, 20:485–509, 1983.

    Article  MATH  Google Scholar 

  26. P. Ladevèze and E.A.W. Maunder. A general methodology for recovering equilibration finite element tractions and stress fields for plate and solid elements, in First international workshop on Trefftz Method, 30. May–1. June, 1996, Cracov, Poland, Archives of Mechanics, pages 34–35, 1995.

    Google Scholar 

  27. J.C. Nagtegaal, D.M. Parks, and J.R. Rice. On numerically accurate finite element solutions in the fully plastic range. Computer Methods in Applied Mechanics and Engineering, 4:153–177, 1974.

    Article  MathSciNet  Google Scholar 

  28. R. Niekamp,, and E. Stein. An object-oriented approach for parallel two-and three-dimensional adaptive finite element computations. Computers and Structures, pages 317–328, 2002.

    Google Scholar 

  29. S. Ohnimus. Theorie und Numerik dimensions-und modelladaptiver Finite-Elemente-Methoden von Flächentragwerken, Dissertationsschrift. Berichte des Instituts für Baumechanik und Numerische Mechanik der Universität Hannover, F96/6,1996.

    Google Scholar 

  30. S. Ohnimus, E. Stein, and E. Walhorn. Local error estimates of FEM for displacement and stresses in linear elasticity by solving local Neumann problems. International Journal for Numerical Methods in Engineering 52:727–746, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  31. M. Ortiz and J. J. Quigley. Adaptive mesh refinement in strain localization problems. Computer Methods in Applied Mechanics and Engineering, 90:781–804, 1991.

    Article  Google Scholar 

  32. D. Perić, J. Yu, and D.R.J. Owen. On error estimates and adaptivity in elastoplastic solids: Applications to the numerical simulation of strain localization in classical and cosserat continua. International Journal for Numerical Methods in Engineering, 37:1351–1379, 1994.

    Article  MathSciNet  Google Scholar 

  33. R. Prandtl. Spannungsverteilung in plastischen Körpern. In Proceedings of the 1st International Congress on Applied Mechanics, Delft, 1924.

    Google Scholar 

  34. R. Rannacher and F.-T. Suttmeier. A posteriori error control in finite element methods via duality techniques: Application to perfect plasticity. Technical report, Preprints of SFB 350, Universität Heidelberg, 1997.

    Google Scholar 

  35. M. Schmidt. Fehlerschätzung und adaptive Lastschrittsteuerung bei elastoplas-tischen Problemen. Master’s thesis, Institut für Baumechanik und Numerische Mechanik, 1996.

    Google Scholar 

  36. J. Schroder, O. Klaas, E. Stein, and C. Miehe. A physically nonlinear dual mixed finite element formulation. Technical report, Institut für Baumechanik und Numerische Mechanik, Universität Hannover, 1995.

    Google Scholar 

  37. J. Schroder, O. Klaas, E. Stein, and C. Miehe. A physically nonlinear dual mixed finite element formulation. Computer Methods in Applied Mechanics and Engineering, 144:77–92, 1997.

    Article  Google Scholar 

  38. J.C. Simo and M.S. Rifai. A class of mixed assumed strain methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering, 29:1595–1693, 1980.

    Article  MathSciNet  Google Scholar 

  39. E. Stein and R. Ahmad. An equilibrium method for stress calculation using finite element displacement models. Computer Methods in Applied Mechanics and Engineering, 10:175–198, 1977.

    Article  Google Scholar 

  40. E. Stein, F.-J. Barthold, S. Ohnimus, and M. Schmidt. Adaptive finite elements in elastoplasticity with mechanical error indicators and Neumann-type estimators. Advances in Adaptive FEM, Cachan, 17.–19. Sep. 97, Proceedings edited by P. Ladevèze and T.J. Oden in Elsevier Science B.V., ISBN 0-08-043327-8, 1997.

    Google Scholar 

  41. E. Stein and S. Ohnimus. Dimensional adaptivity in linear elasticity with hierarchical test-spaces for h-and p-refinement processes. Engineering with Computers, 12:107–119, 1996.

    Article  Google Scholar 

  42. E. Stein and S. Ohnimus. Coupled model-and solution-adaptivity in the finite-element method. Computer Methods in Applied Mechanics and Engineering, 150:327–350, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  43. E. Stein and S. Ohnimus. Equilibrium method for postprocessing and error estimation in the finite elemente method, in First international workshop on Trefftz Method, 30. May–1. June, 1996, Cracov, Poland, Computer Assisted Mechanics and Engineering Sciences, 4:645–666, 1997.

    MATH  Google Scholar 

  44. E. Stein and M. Rüter. Finite element methods for elasticity with error-controlled discretization and model adaptivity. E. Stein, R. de Borst and T.J.R. Hughes (editors), Encyclopedia of Computational Mechanics. John Wiley & Sons, Chichester, 2004.

    Google Scholar 

  45. E. Stein, M. Rüter and S. Ohnimus. Adaptive finite element analysis and modeling of solids and structures—findings, problems and trends. International Journal for Numerical Methods in Engineering, in print, 2004.

    Google Scholar 

  46. E. Stein. (Edt.) Error — controlled adaptive finite elements in solid mechanics. John Wiley & Sons Ltd. 2002

    Google Scholar 

  47. O. C. Zienkiewicz and J. Z. Zhu. A simple error estimator and adaptive procedure for practical engineering analysis. International Journal for Numerical Methods in Engineering, 24:337–357, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  48. O. C. Zienkiewicz and J. Z. Zhu. The superconvergent patch recovery and adaptive finite element refinement. Computer Methods in Applied Mechanics and Engineering, 101:207–224, 1992.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 CISM, Udine

About this chapter

Cite this chapter

Stein, E., Niekamp, R., Ohnimus, S., Schimdt, M. (2005). Hierarchical Model and Solution Adaptivity of Thin-walled Structures by the Finite-Elements-Method. In: Stein, E. (eds) Adaptive Finite Elements in Linear and Nonlinear Solid and Structural Mechanics. CISM International Centre for Mechanical Sciences, vol 416. Springer, Vienna. https://doi.org/10.1007/3-211-38060-4_2

Download citation

  • DOI: https://doi.org/10.1007/3-211-38060-4_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-26975-6

  • Online ISBN: 978-3-211-38060-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics