Skip to main content

Assembly of Microproducts: State of the Art and New Solutions

  • Conference paper
Book cover AMST’05 Advanced Manufacturing Systems and Technology

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 486))

Abstract

Nowadays, miniaturization is playing an important role in product redesign while complex microproducts are leaving their traditional domains. These two aspects concur to the need for increasing their production and reducing their cost. One of the main production problems is represented by microassembly. This keynote paper deals with the microassembly problems, shows the state of the art of the research, highlights the most promising R&D areas in this field and finally presents some new solutions for hybrid microproducts assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van Brussel, H., Peirs, J., Reynaerts, D., Delchambre, A., Reinhart, G., Roth, N., Weck, M., Zussman, E., (2000), Assembly of microsystem, Annals of the CIRP, vol 49/2 pp. 451–472.

    Article  Google Scholar 

  2. http://www.freescale.com/files/analog/rich_media/videos/RMVID3DIMAGING.html?tid=tanl

    Google Scholar 

  3. Alting, L., Kimura, F.N, Hansen, H., Bissacco, G., Micro Engineering, (2003), Annals of the CIRP, vol.52, no.2, pp.635–657.

    Google Scholar 

  4. Gengenbach, U., Hofmann, A., Engelhardt, F., Scharnowell, R., Köhler, B., (2001), The microgripper Construction kit, Proceeding of SPIE Vol. 4568, p. 24–31, Microrobotics and Microassembly III

    Article  Google Scholar 

  5. de Grood, P.J., Goiter, R.J.A., (2004), Accurate Pick and Place by Micro Systems Manipulators Based on 2D Vision Measurements, Proceedings of the IMG04 pp355–362

    Google Scholar 

  6. Stefanini C., Dario P., Carrozza M.C., D’Attanasio S., (1998), “A Mobile Microrobot Actuated by a New Electromagnetic Wobble Micromotor”. IEEE/ASME Transactions on Mechatronics, 3(1) 9–16.

    Article  Google Scholar 

  7. www.nanomotor.de

    Google Scholar 

  8. www.microcar-karlsruhe.de

    Google Scholar 

  9. Croquet, V. Delchambre, A., (2004), Innovative Implantable Drug Delivery System: Design Process, Proceedings of the International Precision Assembly Seminar, Bad Hofgastein, Austria

    Google Scholar 

  10. Fleischer, J., Volkmann, T., Weule, H., (2003), Factory Microplanning Methodology for the Production of Micro Mechatronical System, CIRP Seminar on Micro and Nano Technology 2003, Copenhagen, November 13–14, pp. 17–20

    Google Scholar 

  11. Reinhart, G., Höhn, M., (2001), Cost Efficient Assembly of Microsystems Using Positioning Strategies of Endpoint Sensing and Actuating, Production Engineering, Vol. VII/2.

    Google Scholar 

  12. Geiger, M; Kleiner, M.; Eckstein, R.; Tiesler, N.; Engel, U., (2001), Microforming. Keynote Paper. Annals of the CIRP, 50/2, 445–462.

    Google Scholar 

  13. Autumn, K., Liang, Y. A., Hsieh, S. T., Zesch, W., Pang Chan, W., Kenny, T. W., Fearing, R., Full, R. J., (2000), Adhesive force of a single gecko foot-hair, Letter to Nature, NATURE, Vol 405.

    Google Scholar 

  14. Allen, R. C., (2000), Triboelectric Generation: Getting Charged, EE-Evaluation Engineering Desco Industries, pp.8 S-4–S-10.

    Google Scholar 

  15. Hitoshi Suda, (2001), Origin of Friction Derived from Rupture Dynamics, Langmuir, Vol. 17, No.20, pp. 6045–6047.

    Article  Google Scholar 

  16. Fearing, R.S., (1995), Survey of Sticking Effects for Micro Parts Handling, Proc. IROS’ 95, IEEE/RSJ Int. Conf on Intelligent Robots and System, 2:236–241

    Google Scholar 

  17. Menciassi, A., Eisinberg, A., Izzo, I., Dario, P., (2004), From “Macro” to “Micro” Manipulation: Models and Experiments, Transactions on Mechatronics, IEEE, June 2004.

    Google Scholar 

  18. Feddema J.T., Xavier P. and Brown R., (1998), Assembly Planning at the Micro Scale, Proceeding of the Workshop on Precision Manipulation at the Micro and Nano Scales, Proceedings of IEEE International Conference on Robotics and Automation, Leuven, Belgium, May 16–20.

    Google Scholar 

  19. Pagano, C., Ferraris, E., Malosio, M., Fassi, I., (2003), Micro-handling of parts in presence of adhesive forces, CIRP Seminar on Micro and Nano Technology 2003, Copenhagen, pp.81–84

    Google Scholar 

  20. Lambert, P., Delchambre, A., (2003), Forces acting on Microparts: Towards a numerical approach for gripper design and manipulation strategies in Microassembly, Proceedings of the International Precision Assembly Semininar, Bad Hofgastein, Austria

    Google Scholar 

  21. Arai, F., Ando, D., Fukuda, T., Nonoda, Y., Oota, T., (1995), Micro manipulation based on micro physics-strategy based on attractive force reduction and stress measurement, Proceedings of the International Conference on Intelligent Robots and Systems, pp.236–241.

    Google Scholar 

  22. Tichem, M., Lang, D., Karpuschewski, B, (2003), A classification scheme for quantitative analysis of micro-grip principles, Proc. of the Int. Precision Assembly Semininar, Bad Hofgastein, Austria.

    Google Scholar 

  23. Shu-Ang Zhou, (2003), On forces in microelectromechanical Systems, International Journal of Engineering Sci. 41, 313–335.

    Article  Google Scholar 

  24. Fujita H., Omodaka A., (1988), The Fabrication of an Electrostatic Linear Actuator by Silicon Micro-machining, IEEE Transactions on Electron Devices, Vol 35, NO. 6, pp. 731–734

    Article  Google Scholar 

  25. Hélin, P., Druon, C., Sadaune, V., (1996), A Microconveyor Using Surface Acoustic Waves in the HF Band, Proc. Mecatronics’ 96, 580–582.

    Google Scholar 

  26. Grutzeck, H., Kiesewetter, L., (2002), Downscaling of gripper for micro assembly, microsystem Twehcnologies (8), pp.27–31 ¢Springer-Verlag

    Google Scholar 

  27. http://www.aist.go.jp/MEL/

    Google Scholar 

  28. Sato, K., Koyano, K., (1993), Novel Manipulator for Micro Object Handling as Interface between Micro and Human Worlds, IEEE/RSJ International Conference on Intelligent Robots and Systems

    Google Scholar 

  29. Ooyama Naotake et al., (2000), Desktop Machining Microfactory, Proc.2nd Int. workshop on microfactories, Switzerland, p 14–17

    Google Scholar 

  30. Geiger, M., Egerer, E., Engel, U., (2002), Cross Transport in a Multi-Station Former for Microparts, Production Engineering, Vol. IX, No. 1, pp. 101–104.

    Google Scholar 

  31. Onori, M., Barata, J., Lastra, J., Tichem M., (2002), European Precision Assembly-Roadmap 2010, Assembly-Net, ISBN 91-7283-637-7.

    Google Scholar 

  32. H._J. Yeh and J. S. Smith, (1994), Fluidic assembly for the integration of GaAs light-emitting diodes on Si substrates, IEEE Photon. Technol. Lett., vol. 46, pp. 706–709.

    Article  Google Scholar 

  33. K. Böhringer, K. Goldberg, M. Cohn, R. Howe, and A. Pisano, (1998), Parallel microassembly with electrostatic force fields, in Proc. IEEE Int. Robot. Automat. Conf, pp. 1204–1211.

    Google Scholar 

  34. Xiong, X., Hanein, Y., Fang, J., Wang, Y., Wang, W., Schwartz, D. T., Böhringer, K. F., (2003), Controlled Multi-Batch Self-Assembly of Micro Devices. ASME/IEEE Journal of Microelectromechanical Systems 12(2): 117–127.

    Article  Google Scholar 

  35. Del Corral, C., Zhou, Q., Albut, A., Chang, B, Franssila, S., Tuomikoski, S., Koivo, H.N., (2003), Droplet Based Self-Assembly of SU-8 Microparts, Proceedings of 2nd VDE World Microtechnologies Congress, MICRO.tec 2003, Germany, pp. 293–298.

    Google Scholar 

  36. Böhringer, K. F. Srinivasan, U., Howe, R. T., (2001), Modeling of Fluidic Forces and Binding Sites for Fluidic Self-Assembly. IEEE Conference on Micro Electro Mechanical Systems (MEMS), pp. 369–374, Interlaken, Switzerland, January 21–25,.

    Google Scholar 

  37. Terfort A., Whitesides, G. M., (1998), Self-assembly of an operating electrical circuit based on shape complementarity and the hydrophibic effects, Adv. Mater., vol. 10, no. 6, pp. 470–473.

    Article  Google Scholar 

  38. Reinhart, G., Hohn, M., Growth into Miniaturization-Flexible Microassembly Automation, Annals of CIRP Vol. 46/1/97 p.7–10

    Google Scholar 

  39. Week, M., Hümmler, J., Petersan, B., (1997), Assembly of Hybrid micro systems in a large-chamber electron microscope by use of mechanical grippers, Proc. of SPIE, Micromachining and microfabrica-tion Process Technology III, 3223:223–229.

    Google Scholar 

  40. Carrozza, M.C., Dario, P., Menciassi, A., Fenu, A., (1998), Manipulating biological and mechanical microobjects using LIGA-microfabricated End-effectors, Proc. ICRA, 1811–1816.

    Google Scholar 

  41. Ahn, C.H., Allen, M. G., (1994), A Fully Integrated Micromachined Magnetic Particle Manipulator and separator, Proc. IEEE MEMS, pp. 91–96.

    Google Scholar 

  42. Lambert, P., Vandaele, V., Delchambre, A., (2004), Non contact handling in micro-assembly: state of the art, IPAS 2004, February 12–14.

    Google Scholar 

  43. Biganzoli, F., Fantoni, G, (2004), Contactless Electrostatic Handling of Microcomponents, Proc. Instn. Mech. Engrs. Vol 218 Part B: Journal of Engineering Manufacture, pp 1795–1806.

    Google Scholar 

  44. Fantoni, G., Santochi, M., (2004), A contactless electrostatic device for linear movement of mini and microparts, Proceedings of the IMG04, Genova, Italy, pp. 343–348.

    Google Scholar 

  45. Biganzoli, F., Pagano, C., Fassi, I., (2005), A micro-manipulation system based on capillary force, to be published.

    Google Scholar 

  46. Fantoni, G., Santochi, M., (2005), Modular contactless feeders for mini and microparts, Annals of the CIRP, vol.54/l.

    Google Scholar 

  47. Gengenbach, U., Boole, J., (2000), Electrostatic feeder for contactless transport of miniature and Microparts, Microrobotics and Micro-manipulation, Proceeding of SPIE, pp. 75–81.

    Google Scholar 

  48. Reinhart, G., Hoeppner, J., (2000), Non-Contact Handling Using High-Intensity Ultrasonics, Annals of the CIRP Vol. 49/1/2000

    Google Scholar 

  49. Bancel, P.A., Cajipe, V.B., Rodier, F., Witz, J., (1998), Laser seeding for biomolecular crystallization, Journal of Crystal Growth, Vol. 191, pp. 537–544.

    Article  Google Scholar 

  50. Rambin, C.L., Warrington, R.O., (1994), Micro-assembly with a focused laser beam, IEEE MEMS, pp.285–290.

    Google Scholar 

  51. Nakao, M., Tsuchiya, K., Matsumoto, K., Hatamura, Y., (2001), Micro Handling with Rotational Needle-type Tools Under Real Time Observation, Annals of the CIRP, vol. 50/1.

    Google Scholar 

  52. Bark, C., Binneboese, T., (1998), Gripping with low viscosity fluid, IEEE Int. workshop on MEMS, pp.301–305.

    Google Scholar 

  53. Hesselbach, J.; Büttgenbach, S.; Wrege, J.; Bütefisch, S.; Graf, C., (2001), Centering electrostatic microgripper and magazines for microassembly tasks. Microrobotics and Microassembly 3, Proc. of SPIE, vol.4568, Newton, USA.

    Google Scholar 

  54. Zesch, W., Brunner, M., Weber, A., (1997), Vacuum tool for handling microobjects with a NanoRobot, Proc. ICRA, 1761–1776.

    Google Scholar 

  55. Arai, F., Fukuda, T., (1997), A new pick up and release method by heating for micromanipulation, IEEE MEMS, 383–388.

    Google Scholar 

  56. El-Khouy, M., (1998), Ice gripper handles microsized component, Design News, September, 8.

    Google Scholar 

  57. Saitou, K., Wang D., Wou S.J., (2000) Externally Resonated Linear Vibromotor for Microassembly, Journal of Microelectromechanical systems, vol. 9, no. 3, 336–345

    Article  Google Scholar 

  58. Prasad, R., Böhringer, K.-F., MacDonald, N. C, (1995), Design, fabrication, and characterization of single crystal silicon latching snap fasteners for micro assembly, in ASME Int. Mech. Eng. Congr. Expo., 917–923.

    Google Scholar 

  59. Shimada, E., Thompson, J.A., Yan, J., Wood, R., Fearing, R.S., (2000), Prototyping Millirobot using dexterous microassembly ad folding, Proc. ASME IMECE/DSCD November 5–10. More details http://robotics.eecs.berkeley.edu/~eshimada/micro/index.html

    Google Scholar 

  60. Arai, F. Andou, D. Nonoda, Y. Fukuda, T. Iwata, H. Itoigawa, K., (1996), Micro endeffector with micro pyramids and integrated piezoresistive force sensor, Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems.

    Google Scholar 

  61. Thompson, J.A., Fearing, R.S., (2001), Automating Microassembly with Ortho-tweezers and Force Sensing, IROS 2001, Maui, HI.

    Google Scholar 

  62. Karl F. Böhringer, Srinivasan, U., Roger T. Howe, (2001), Modeling of Fluidic Forces and Binding Sites for Fluidic Self-Assembly. IEEE Conference on Micro Electro Mechanical Systems (MEMS), Interlaken, Switzerland, 369–374.

    Google Scholar 

  63. http://www.ee.washington.edu/research/mems/selfassembly/

    Google Scholar 

  64. Dechev, N., Cleghorn, W. L., Mills, J. K., (2003), Construction of a 3D MEMS Microcoil Using Sequential Robotic Microassembly Operations, Proceedings ASME International Mechanical Engineering Congress and R&D Expo 2003, Washington, D.C, Nov 15–21.

    Google Scholar 

  65. Han, H., Weiss, L. E., Reed, M.L., (1991), Design and Modeling of a Micromechanical Surface Bonding System, Transducers, p. 974–977.

    Google Scholar 

  66. Cohn, M. B., Böhringer, K. F., Noworolski, J. M., Singh, A., Keller, C. G., Goldberg, K. Y. Howe, R.T., Microassembly technologies for MEMS, in Proc. SPIE Microfluid. Devices Conf, vol. 3515, Santa Clara, CA, Sept. 1998, pp. 2–16.

    Article  Google Scholar 

  67. Moesner, F.M., Higuchi T., Electrostatic Devices for Particle Microhandling, (1999), 530 IEEE Transactions on Industry Applications, Vol. 35, No. 3.

    Google Scholar 

  68. Konishi, S., Fujita, H., (1994), A conveyance system using air flow based on the concept of distributed micro motion systems, journal of micromechanical Systems; Vol.3, No.2, pp.54–58.

    Article  Google Scholar 

  69. http://www.ind.tno.nl

    Google Scholar 

  70. Fahlbusch, S.; Fatikow, S.; Seyfried, J.; Buerkle, A., (1999), Flexible microrobotic system MINIMAN: design, actuation principle and control 1999. International Conference on Advanced Intelligent Mechatronics, Proceedings, IEEE/ASME, 156–161.

    Google Scholar 

  71. Lee, J., Moon, H., Fowler, J., Chang-Jin K., Schoellhammer, T., (2001), Addressable micro liquid handling by electric control of surface tension, The 14th IEEE International Conference on Micro Electro Mechanical Systems, 499–502.

    Google Scholar 

  72. Han, H., Weiss, L. E., Reed, M.L., (1991), Design and Modeling of a Micromechanical Surface Bonding System, Transducers, 974–977

    Google Scholar 

  73. Ata, A., Y. I. Rabinovich, R. K. Singh, (2002), Role of surface roughness in capillary adhesion, Journal of Adhesion Science and Technology, vol. 16, no. 4, 337–346

    Article  Google Scholar 

  74. Marmur, A., (1993), Tip-Surface Capillary Interactions, Langmuir, vol. 9, 1922–1926.

    Google Scholar 

  75. Grutzeck, H., Kiesewetter, L., (2002), Downscaling of grippers for micro-assembly, Microsystem Technologies, no 8, pp 27–31

    Google Scholar 

  76. Höhn, M., Robl, C., (1999), Qualification of standard industrial robots for micro-assembly, in Proc. of the IEEE International Conference on Robotics & Automation (ICRA’99), Detroit, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 CISM, Udine

About this paper

Cite this paper

Santochi, M., Fantoni, G., Fassi, I. (2005). Assembly of Microproducts: State of the Art and New Solutions. In: Kuljanic, E. (eds) AMST’05 Advanced Manufacturing Systems and Technology. CISM International Centre for Mechanical Sciences, vol 486. Springer, Vienna. https://doi.org/10.1007/3-211-38053-1_9

Download citation

  • DOI: https://doi.org/10.1007/3-211-38053-1_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-26537-6

  • Online ISBN: 978-3-211-38053-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics