Skip to main content

Abstract

Is it possible to break down natural porous material systems down to a scale where materials no longer change from one material to another, and upscale (‘nanoengineer’) the behavior from the nanoscale to the macroscale of engineering applications? — This is the challenging question we address in these lecture notes through a review of tools and methods of experimental microporomechanics. The combination of advanced experimental indentation techniques and microporomechanics theory provides a unique opportunity to understand and assess nanoproperties and microstructure, as a new basis for the engineering prediction of macroscopic poromechanical properties of natural composites. This is illustrated for cement-based materials and shales.

In Collaboration with Prof. Y. Abousleiman (Oklahoma University at Norman): Dr. Paul Acker and Jean-Francois Batoz (Lafarge Corp.), Drs. R. Ewy, L. Duranti, D. K. McCarty (Chevron Texaco); and the support of Nanolab@MIT team, A. Schwartzman and Prof. K. Van Vliet. Financial support by the Lafarge Corporation and Chevron Texaco is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • P. Acker. Micromechanical analysis of creep and shrinkage mechanisms, In F.-J. Ulm, Z.P. Bažant, and F.H Wittmann, editors, Creep, Shrinkage and Durability Mechanics of Concrete and other quasi-brittle Materials. Elsevier, Oxford UK, 15–25, 2001.

    Google Scholar 

  • D.M. Barnett and J. Lothe. Line force loadings on anisotropic half-spaces and wedges. J. Appl. Phys., 23:470–474, 1975.

    Google Scholar 

  • Z.P. Bažant. Thermodynamics of interacting continua with surfaces and creep analysis of concrete structures. Nuclear Engrg. and Design, 20:477–505, 1972.

    Article  Google Scholar 

  • R.H. Bennett, N.R. O’Brien, and M.H. Hulbert. Determinants of clay and shale microfabric signatures: Processes and mechanisms. In R. Bennett, W. Bryant, M. Hulbert, editors, Microstructure of fine grained sediments: from mud to shale, Springer-Verlag, New York, Chapter 2, 5–32, 1991.

    Google Scholar 

  • A. Bentur. Effect of curing temperature on the pore structure of tricalcium silicate pastes. Journal of Colloid and Interface Science, 74(2):549–560, 1980.

    Article  Google Scholar 

  • O. Bernard, F.-J. Ulm, and E. Lemarchand. A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials. Cem. Concr. Res., 33(8):1155–1173, 2003.

    Article  Google Scholar 

  • M.A. Biot. General theory of three dimensional consolidation. Journal of Applied Physics, 12:155–164, 1941.

    Article  Google Scholar 

  • F.M. Borodich, L.M. Keer, and C.S. Korach. Analytical study of fundamental nanoindentation test relations for indenters of non-ideal Shapes. Nanotechnology, 14:803–808, 2003.

    Article  Google Scholar 

  • F.M. Borodich and L.M. Keer. Contact problems and depth-sensing nanoindentation for frictionless and frictional boundary conditions. Int. J. Solids Struct., 41: 2479–2499, 2004.

    Article  MATH  Google Scholar 

  • J. Brittan, M. Warner, and G. Pratt. Short Note: Anisotropic parameters of layered media in terms of composite elastic properties. Geophysics, 60(4): 1243–1248, 1995.

    Article  Google Scholar 

  • X. Chateau and L. Dormieux. Micromechanics of saturated and unsaturated porous media. Int. J. Numer. Anal. Meth, Geomech., 26:830–844, 2002.

    Article  Google Scholar 

  • Y.-T. Cheng and C.-M. Cheng. Scaling relationships in conical indentation of elastic-perfectly plastic solids. Int. J. Solids Struct, 36:1231–1243, 1999.

    Article  MATH  Google Scholar 

  • Y.-T. Cheng and C.-M. Cheng. Scaling, dimensional analysis, and indentation measurements. Materials Science and Engineering, R44:91–149, 2004.

    Google Scholar 

  • G. Constantinides, F.-J. Ulm, and K.J. van Vliet. On the use of nanoindentation for cementitious materials. Materials and Structures (Special issue of Concrete Science and Engineering) RILEM, 205:191–196, 2003.

    Google Scholar 

  • G. Constantinides and F.-J. Ulm. The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cem. Concr. Res., 34(1):67–80, 2004.

    Article  Google Scholar 

  • G. Constantinides and F.-J. Ulm. Material invariant properties of cement-based materials: an experimental microporomechanics approach. MIT-CEE Res. Rep. R04-03 (Ph.D.-Dissertation), Cambridge, MA, In Preparation.

    Google Scholar 

  • O. Coussy. Mechanics of porous continua. J. Wiley & Sons, Chichester, UK, 1995.

    MATH  Google Scholar 

  • O. Coussy. Poromechanics. J. Wiley & Sons, Chichester, UK, 2004.

    Google Scholar 

  • A. Delafargue and F.-J. Ulm. Explicit approximations of the indentation modulus of elastically orthotropic solids for conical indenters. Int. J. Solids Struct., 41: 7351–7360, 2004.

    Article  MATH  Google Scholar 

  • A. Delafargue and F.-J. Ulm. Material invariant properties of shales: nanoindentation and microporoelastic analysis. MIT-CEE Res. Rep. R04-02 (SM-Dissertation), Cambridge, MA, 2004.

    Google Scholar 

  • M.F. Doerner and W.D. Nix. A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res., 1:601–609, 1986.

    Google Scholar 

  • H.A. Elliot. Axial symmetric stress distributions in aelotropic hexagonal crystals: The problem of the plane and related problems. Proc. Camb. Phil. Soc., 45:621–630, 1949.

    Article  Google Scholar 

  • A. Donev, I. Cisse, D. Sachs, E.A. Variano, F.H. Stillinger, R. Connely, S. Torquato, P.M. Chaikin. Improving the density of jammed disordered packings using ellipsoids. Science, 303:990–993, 2004.

    Article  Google Scholar 

  • L. Dormieux, A. Molinari, and D. Kondo. Micromechanical approach to the behaviour of poroelastic materials, J. Mech. Phys. Solids, 50:2203–2231, 2002.

    Article  MATH  Google Scholar 

  • L. Dormieux and E. Bourgeois. Introduction à la micromécanique des milieux poreux. Presses de l’Ecole nationale des ponts et chaussées, Paris, France, 2003.

    Google Scholar 

  • A. El Omri, A. Fennan, F. Sidoroff, and A. Hihi A. Elastic-Plastic homogenization for layered composites. European Journal of Mechanics, A/Solids 19:585–601, 2000.

    Article  MATH  Google Scholar 

  • J. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society London, Series A, 241:376–396, 1957.

    Article  MATH  MathSciNet  Google Scholar 

  • R.F. Feldman and P.J. Sereda. A new model of hydrated cement and its practical implications. Eng. J. Can., 53:53–59, 1970.

    Google Scholar 

  • F.P. Ganneau and F.-J. Ulm. From nanohardness to strength properties of cohesive-frictional Materials — Application to shale materials. MIT-CEE Res. Rep. R04-01 (SM-Dissertation), Cambridge, MA, 2004.

    Google Scholar 

  • F.P. Ganneau, G. Constantinides, and F.-J. Ulm. Dual indentation technique for the assessment of strength properties of cohesive-frictional materials. Int. J. Solids Struct, (in review), 2004.

    Google Scholar 

  • E.J. Garboczi. Computational materials science of cement-based materials. Materials and Structures, RILEM, 26(2): 191–195, 1993.

    Article  Google Scholar 

  • M.T. Hanson. The elastic field for conical indentation including sliding friction for transverse isotropy. J. Appl. Mech., 59:S123–S130, 1992.

    Google Scholar 

  • Z. Hashin and P.J.M. Monteiro. An inverse method to determine the elastic properties of the interphase between the aggregate and the cement paste. Cem. Conor. Res., 32(8):1291–1300, 2002.

    Article  Google Scholar 

  • P. Helnwein. Some remarks on the compressed matrix representation of symmetric second-order and fourth-order tensors. Comput. Methods Appl. Mech. Engrg., 190:2753–2770, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  • F.H. Heukamp and F.-J. Ulm. Chemomechanics of calcium leaching of cement-based materials at different scales: The role of CH-dissolution and C-S-H degradation on strength and durability performance of materials and structures. MIT-CEE Report R02-03 (D.Sc.-Dissertation), Cambridge, MA, 2002.

    Google Scholar 

  • H.G. Hopkins, A.D. Cox, and G. Eason. Axially symmetric plastic deformation in soils. Philosophical Transactions, Royal Society, A264:1–45, 1961.

    MathSciNet  Google Scholar 

  • B. Hornby, L. Schwartz, and J. Hudson. Anisotropic effective medium modeling of the elastic properties of shales. Geophysics, 59(10):1570–1583, 1994.

    Article  Google Scholar 

  • B. Hornby. Experimental laboratory determination of the dynamic elastic properties of wet, drained shales. Journal of Geophysical Research, 103(B12), 29,945–29,964, 1998.

    Article  Google Scholar 

  • S. Igarashi, A. Bentur, and S. Mindess. Characterization of the microstructure and strength of cement paste by microhardness testing. Advances in Cement Research, 8(30):877–890, 1996.

    Google Scholar 

  • H.M. Jaeger and S.R. Nagel. ‘Physics of granular state. Science, 255(5051):1523–1531, 1992.

    Article  Google Scholar 

  • M. Jakobsen, J.A. Hudson, and T.A. Johansen. T-matrix approach to shale acoustics. Geophys. J. Int., 154:533–558, 2003.

    Article  Google Scholar 

  • H.M. Jennings. A model for the microstructure of calcium silicate hydrate in cement paste. Cem. Concr. Res., 30(1):101–116, 2000.

    Article  MathSciNet  Google Scholar 

  • H.M. Jennings. Colloid model of C-S-H and implications to the problem of creep and shrinkage. Materials and Structures (Special issue of Concrete Science and Engineering) RILEM, 265:59–70, 2004.

    Article  Google Scholar 

  • T.A. Johansen, B.O. Ruud, and M. Jakobsen. Effect of grain scale alignment on seismic anisotropy and reflectivity of shales. Geophysical Prospecting, 52:133–149, 2004.

    Article  Google Scholar 

  • L.E.A. Jones and H.F. Wang. Ultrasonic velocities in Cretaceous shales from the Williston basin. Geophysics, 46:288–297, 1994.

    Article  Google Scholar 

  • D. Katti, S. Schmidt, D. Gosh, and K. Katti. Modeling response of pyrophyllite clay interlayer to applied stress using steered moelcular dynamics. personal communication, 2003.

    Google Scholar 

  • N. Laws. A note on penny-shaped cracks in transversely isotropic materials. Mechanics of Materials, 4:209–212, 1985.

    Article  Google Scholar 

  • G.Q. Li, Y. Zhao, S.S. Pang, and Y.Q. Li. Effective Young’s modulus estimation of concrete. Cem. Concr. Res., 29(9):1455–1462, 1999.

    Article  Google Scholar 

  • D. Marion, A. Nur, H. Yin, and D. Han. Compressional velocity and porosity in sand-clay mixtures. Geophysics, 57(4):554–563, 1992.

    Article  Google Scholar 

  • M. Matar and J. Salençon. Capacité portante des fondations superficielles circulaires. Journal de Mechanique Théorique et Appliquée, 1(2):237–267, 1982. Available in English In Foundation Engineering, Volume 1, Soil properties-Foundation design and construction, Presse de l’Ecole Nationale des Ponts et Chaussées, France.

    MATH  Google Scholar 

  • G. Mavko, T. Mukerji, and J. Dvorkin. The Rock Physics Handbook. Cambridge University Press, UK, 1998.

    Google Scholar 

  • J. Mitchell. Fundamentals of soil behavior. J. Wiley & Sons, New York, 1993.

    Google Scholar 

  • W.C. Oliver and G.M. Pharr. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res., 7(6): 1564–1583, 1992.

    Google Scholar 

  • G.M. Pharr. Understanding nanoindentation unloading curves. J. Mater. Res., 17(10):2660–2671, 2002.

    Google Scholar 

  • T.C. Powers and T.L. Brownyard. Studies of the physical properties of hardened portland cement paste. PCA Bulletin 22, 1948.

    Google Scholar 

  • M. Prasad, M. Kopycinska, U. Rabe, and W. Arnold, W. Measurement of Young’s modulus of clay minerals using atomic force acoustic microscopy. Geophysical Research Letters, 29(8), 1172, 13-1–13-4, 2002.

    Article  Google Scholar 

  • L.F. Pratson, A. Stroujkova, D. Herrick, F. Boadu, and P. Malin. Predicting seismic velocity and other rock properties from clay content only. Geophysics, 68(6): 1847–1856, 2003.

    Article  Google Scholar 

  • J. Salençon. Calcul à la rupture et analyse limite. Presses de l’Ecole nationale des ponts et chaussées, Paris, France, 1983.

    Google Scholar 

  • C.M. Sayers. The elastic anisotrophy of shales, Journal of Geophysical Research, 99(B1):767–774, 1994.

    Article  Google Scholar 

  • C. Sayers. Stress-dependent seismic anisotropy of shales. Geophysics, 64(1):93–98, 1999.

    Article  Google Scholar 

  • N.J.A. Sloane. Kepler’s conjecture confirmed. Nature, 395:435–436, 1998.

    Article  Google Scholar 

  • I. Sneddon, editor. Application of integral transforms in the theory of elasticity. Springer Verlag, Wien-New York, 1977.

    Google Scholar 

  • P. Suquet, editor. Continuum micromechanics, CISM Courses and Lectures no. 377, 1997. Springer Verlag, Wien-New York.

    MATH  Google Scholar 

  • J.G. Swadener and G.M. Pharr. Indentation modulus of elastically anisotropic half-spaces by cones and parabolae of revolution. Philos. Mag., A81:447–466, 2001.

    Google Scholar 

  • P.D. Tennis and H.M. Jennings. A model for two types of calcium silicate hydrate in the microstructure of portland cement pastes. Gem. Concr. Res., 30(6):855–863, 2000.

    Article  Google Scholar 

  • J.J. Thomas and H.M. Jennings. Effect of heat treatment on the pore structure and drying shrinkage behavior of hydrated cement paste. Journal of the American Ceramic Society, 85(9):2293–2298, 2002.

    Google Scholar 

  • L. Thomsen. Weak elastic anisotropy. Geophysics, 52(10):1954–1966, 1986.

    Article  Google Scholar 

  • L. Thomsen. Seismic anisotropy. Geophysics, 66:40–41, 2001.

    Article  Google Scholar 

  • I. Tsvankin. P-wave signatures and notation for transversely isotropic media: An overview. Geophysics, 61(2):467–483, 1996.

    Article  Google Scholar 

  • F.-J. Ulm and O. Coussy. Mechanics and durability of solids. Vol. I: Solid Mechanics. Prentice Hall, Upper Saddle River, New Jersey, 2003.

    Google Scholar 

  • F.-J. Ulm, G. Constantinides, and F.H. Heukamp. Is concrete a poromechanics material? — A multiscale investigation of poroelastic properties, Materials and Structures (Special issue of Concrete Science and Engineering), 265:43–58, 2004.

    Article  Google Scholar 

  • T. Vanorio, M. Prasad, and A. Nur. Elastic properties of dry clay mineral aggregates, suspensions and sandstones. Geophys. J. Int., 155:319–326, 2003.

    Article  Google Scholar 

  • K. Velez, S. Maximilien, D. Damidot, G. Fantozzi, and F. Sorrentino. Determination by nanoindentation of elastic modulus and hardness of pure constituents of portland cement clinker. Cera. Goncr. Res., 31(4):555–561, 2001.

    Google Scholar 

  • B. Velde. Origin and mineralogy of clays. Springer-Verlag, New York, 1995.

    Google Scholar 

  • J.J. Vlassak and W.D. Nix. Indentation modulus of elastically anisotropic half spaces. Philos. Mag., A67(5): 1045–1056, 1993.

    Google Scholar 

  • J.J. Vlassak and W.D. Nix. Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids, 42(8):1223–1245, 1994.

    Article  Google Scholar 

  • J.J. Vlassak, M. Ciavarella, J.R. Barber, and X. Wang. The indentation modulus of elastically anisotropic materials for indenters of arbitrary shape. J. Mech. Phys. Solids, 51:1701–1721, 2003.

    Article  MATH  Google Scholar 

  • Z. Wang, H. Wang, and M.E. Cates. Effective elastic properties of solid clays. Geophysics, 66(2):428–440, 2001.

    Article  Google Scholar 

  • Z. Wang, Z. Seismic anisotropy in sedimentary rocks. Part 1: A single plug laboratory method; Part 2: Laboratory data. Geophysics, 67(5): 1415–1422 (part I) and 67(5): 1423-1440 (part II).

    Google Scholar 

  • J.R. Willis. Herztian contact of anisotropic bodies. J. Mech. Phys. Solids, 14:163–176, 1966.

    Article  MATH  MathSciNet  Google Scholar 

  • F.H. Wittmann. Bestimmung physikalischer Eigenschaften des Zementsteins. Deutscher Ausschuss fuer Stahlbeton, Heft 232:1–63, 1974, W. Ernst & Sohn, Berlin, Germany.

    Google Scholar 

  • F.H. Wittmann. Creep and shrinkage mechanisms in concrete. In Z.P. Bažant and F.H. Wittmann, editors. Creep & Shrinkage of Concrete, J. Wiley & Sons, New York, 1988.

    Google Scholar 

  • A. Zaoui. Continuum micromechanics: Survey. Journal of Engineering Mechanics (ASCE), 128(8):808–816, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 CISM, Udine

About this chapter

Cite this chapter

Ulm, FJ., Delafargue, A., Constantinides, G. (2005). Experimental Microporomechanics. In: Dormieux, L., Ulm, FJ. (eds) Applied Micromechanics of Porous Materials. CISM International Centre for Mechanical Sciences, vol 480. Springer, Vienna. https://doi.org/10.1007/3-211-38046-9_7

Download citation

  • DOI: https://doi.org/10.1007/3-211-38046-9_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-26362-4

  • Online ISBN: 978-3-211-38046-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics