Diffusive transport in disordered media. Application to the determination of the tortuosity and the permeability of cracked materials.

  • Luc Dormieux
  • Djimedo Kondo
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 480)


This Chapter deals with molecular diffusion in saturated porous media. It provides a micromechanical basis to the phenomenological concept of tortuosity which is classically introduced in order to capture the barrier effect of the solid-fluid interface. Various Eshelby-based estimates of the effective diffusion tensor are derived in the isotropic case. The influence of cracks on the tortuosity is also investigated. Finally, it is shown that the permeability of a cracked porous medium can be estimated with the help of the same mathematical tools.


Porous Medium Effective Diffusion Coefficient Solid Volume Fraction Uniform Boundary Condition Macroscopic Permeability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P.W. Atkins. Physical chemistry. Oxford University Press, 1992.Google Scholar
  2. J.-L. Auriault. Comportement des milieux poreux saturés. In F. Darve, editor, Manuel de rhéologie des géomatériaux. Presses de l’Ecole Nationale des Ponts et Chaussées, 1987.Google Scholar
  3. J.-L. Auriault and Y. Lewandowska. Diffusion/adsorption/advection macrotransport in soils. Eur. J. Mech. A/Solids, 15:681–704, 1996.zbMATHGoogle Scholar
  4. J. Bear and Y. Bachmat. Introduction to the modelling of transport phenomena in porous media. Kluwer Academic Publishers, 1990.Google Scholar
  5. L. Dormieux and E. Lemarchand. Modélisation macroscopique du transport diffusif: apport des méthodes de changement d’échelle. Oil Gas Sc. Tech., 55:15–34, 2000.CrossRefGoogle Scholar
  6. L. Dormieux and E. Lemarchand. An homogenization approach of advection and diffusion in cracked porous material. J. Engrg. Mech., 127:1267–1274, 2001.CrossRefGoogle Scholar
  7. H. Ene and E. Sanchez-Palencia. Equations et phénomènes de surface pour l’écoulement dans un modèle de milieu poreux. Journal de Mécanique, 14:73–108, 1975.zbMATHMathSciNetGoogle Scholar
  8. J.D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A, 241:376–396, 1957.zbMATHMathSciNetCrossRefGoogle Scholar
  9. Y. Guéguen and V. Palciauskas. Introduction to Physics of Rocks. Princeton University Press, 1994.Google Scholar
  10. T. Lévy. Filtration in a porous fissured rock: influence of the fissures connexity. Eur. J. Mech., B/Fluids, 9:309–337, 1990.zbMATHGoogle Scholar
  11. T. Mura. Micromechanics of defects in solids, 2nd edition. Martinus Nijhoff Publ., 1987.Google Scholar
  12. A. Pouya and A. Courtois. Définition de la perméabilité équivalente das massifs fracturés par des méthodes d’homogénéisation. C. R. Acad. Sc. Paris Géoscience, 334:975–979, 2002.Google Scholar
  13. J.R. Willis. Bounds and self consistent estimates for the overall properties of anisotropic composites. J. Mech. Phys. Solids, 25:185–202, 1977.zbMATHCrossRefGoogle Scholar
  14. A. Zaoui. In P. Suquet, editor, Continuum micromechanics. Springer, 1997.Google Scholar
  15. A. Zaoui. Continuum micromechanics: survey. J. Eng. Mech., 128:808–816, 2002.CrossRefGoogle Scholar

Copyright information

© CISM, Udine 2005

Authors and Affiliations

  • Luc Dormieux
    • 1
  • Djimedo Kondo
    • 2
  1. 1.Ecole Nationale des Ponts et ChausséesFrance
  2. 2.Laboratoire de Mécanique de LilleLille University of TechnologyFrance

Personalised recommendations