Transport in Porous Media: Upscaling by Multiscale Asymptotic Expansions

  • Jean-Louis Auriault
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 480)


Transport in porous media is investigated by upscaling the pore scale behaviour. We use the technique of multiscale asymptotic expansions which seems to be the most efficient method to obtaining macroscopic equivalent behaviours. Different transport phenomena are addressed: fluid flow through a saturated porous medium (Darcy’s law), diphasic flow (coupled Darcy’s laws), solute transport (diffusion, advection, dispersion) and fluid flow through deformable porous media (consolidation).


Porous Medium Dimensionless Number Porous Matrix Macroscopic Behaviour Pore Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Y. Anguy, R. Eherlich, C.M. Prince, V. Riggert and D. Bernard. The sample support problem for permeability assessment in reservoir sandstones. In J.M. Yarus and R.L. Chambers, editors, Stochastic Modeling and Geostatistics Principle Methods and Case Studies. A.A.P.G. Computer Application in Geology, 3: 37–53, 1994.Google Scholar
  2. J.-L. Auriault and E. Sanchez-Palencia. Etude du comportement macroscopique d’un milieu poreux saturé déformable. Journal de Mécanique, 16(4):575–603, 1977 (in French).zbMATHMathSciNetGoogle Scholar
  3. J.-L. Auriault. Dynamic behaviour of a porous medium saturated by a Newtonian fluid. Int. J. Engng. Sc., 18:775–785, 1980.zbMATHCrossRefGoogle Scholar
  4. J.-L. Auriault and E. Sanchez-Palencia. Remarques sur la loi de Darcy pour les écoulements biphasiques en milieux poreux. Journal of Theoretical and Applied Mechanics, Special issue “Modélisation assymptotique d’écoulements de fluids”: 141–156, 1986 (in French).Google Scholar
  5. J.-L. Auriault. Non-saturated deformable porous media: quasi-statics. Transport in Porous Media, 2(1):45–64, 1987.CrossRefGoogle Scholar
  6. J.-L. Auriault, T. Strzelecki, J. Bauer and S. He. Porous deformable media saturated by a very compressible fluid: quasi-statics. Eur. J. Mech. A/Solids, 9(4):373–392, 1990.zbMATHMathSciNetGoogle Scholar
  7. J.-L. Auriault. Heterogeneous medium. Is an equivalent macroscopic description possible? Int. J. Eng. Sci., 29(7):785–795, 1991.zbMATHCrossRefGoogle Scholar
  8. J.-L. Auriault and C. Boutin. Deformable porous media with double porosity. Quasi-statics: I Coupling effects. Transport in Porous Media, 7:63–82, 1992.CrossRefGoogle Scholar
  9. J.-L. Auriault and C. Boutin. Deformable porous media with double porosity. Quasi-statics: II Memory effects. Transport in Porous Media, 10:153–169, 1993.CrossRefGoogle Scholar
  10. J.-L. Auriault and P. Adler. Taylor dispersion in porous media: Analysis by multiple scale expansions. Advances in Water Resources, 18(4):217–226, 1995.CrossRefGoogle Scholar
  11. J.-L. Auriault and J. Lewandowska. On the validity of diffusion/dispersion tests in soils. Engineering Transactions, 45(3–4):395–417, 1997.Google Scholar
  12. J.-L. Auriault, C. Geindreau and P. Royer. Filtration law in rotating porous media. C. R. Acad. Sci. Paris, IIb, 328:779–784, 2000.zbMATHGoogle Scholar
  13. J.-L. Auriault, P. Royer and C. Geindreau. Filtration law for power-law fluids in anisotropic porous media. Int. J. Engng. Sc., 40(10):1151–1163, 2002a.CrossRefMathSciNetGoogle Scholar
  14. J.-L. Auriault, C. Geindreau and P. Royer. Coriolis effects on filtration law in rotating porous media. Transport in Porous Media, 48:315–330, 2002b.CrossRefMathSciNetGoogle Scholar
  15. J.-L. Auriault, C. Geindreau and C. Boutin. Filtration law in porous media with poor separation of scales. Sub judice, 2004.Google Scholar
  16. J. Bear. Dynamics of Fluids in Porous Media, 1972. American Elsevier, New-York.Google Scholar
  17. A. Bensoussan, J.L. Lions and G. Papanicolaou. Asymptotic Analysis for Periodic Structures, 1978. North-Holland, Amsterdam.zbMATHGoogle Scholar
  18. M.A. Biot. General theory of three-dimensional consolidation. J. Appl. Physics, 12:155–164, 1941.CrossRefGoogle Scholar
  19. M.A. Biot. Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Physics, 26:182–185, 1955.CrossRefMathSciNetzbMATHGoogle Scholar
  20. M.A. Biot. Generalized theory of acoustic propagation in porous dissipative media. J. Acoust. Soc. Am., 34(9):1254–1264, 1962.CrossRefMathSciNetGoogle Scholar
  21. C. Boutin and J.-L. Auriault. Dynamic behaviour of porous media saturated by a viscoelastic fluid. Application to bituminous concretes. Int. J. Engng. Sc., 28(11):1157–1181, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  22. R. Burridge and J.B. Keller. Poroelasticity equations derived from microstructure. J. Acoust. Soc. Am., 70:1140–1146, 1981.zbMATHCrossRefGoogle Scholar
  23. H. Brenner. Dispersion resulting from flow through spatially periodic porous media. Phil. Trans. R. Soc. Lond., A287:81–133, 1980.MathSciNetGoogle Scholar
  24. J. Chastanet, P. Royer and J.-L. Auriault. Does Klinkenberg law survive upscaling? MRC, 31(3):277–286, 2004.zbMATHCrossRefGoogle Scholar
  25. L. Cherel, G. Bonnet and J.-L. Auriault. Locally periodic medium and homogeneization of random media. Archives of Mechanics, 40(5–6):529–542, 1988.Google Scholar
  26. H. Darcy. Les Fontaines Publiques de la Ville de Dijon, 1856. Dalmont, Paris.Google Scholar
  27. H.I. Ene and E. Sanchez-Palencia. Equations et phénomène de surface pour l’écoulement dans un modèle de milieu poreux. Journal de Mécanique, 14(1):73–108, 1975 (in French).zbMATHMathSciNetGoogle Scholar
  28. M. Firdaouss, J.-L. Guermond and P. Le Quéré. Non linear corrections to Darcy’s law at low Reynolds numbers. J. Fluid Mech., 353:331–350, 1997.CrossRefMathSciNetGoogle Scholar
  29. F. Gassmann. Über die elastizität poröser medien. Vierteljahrsschrift d. Naturf. Ges. Zürich, 96:1–23, 1951 (in German).MathSciNetGoogle Scholar
  30. J.B. Keller. Effective behaviour of heterogeneous media. In U. Iandman, editor, Statistical Mechanics and Statistical Methods in Theory and Application. Plenum, New York, 631–644, 1977.Google Scholar
  31. E. Kröner. Statistical Continuum Mechanics, 1972. Springer Verlag, Wien.zbMATHGoogle Scholar
  32. T. Levy. Propagation of waves in a fluid saturated porous elastic solid. Int. J. Eng. Sci., 17:1005–1014, 1979.CrossRefzbMATHGoogle Scholar
  33. J. Lewandowska and J.-L. Auriault. Scale separation in diffusion/dispersion tests in porous media. In Proceedings of the Biot Conference on Poromechanics, pages 599–604, Louvain-la-Neuve 14–16 September 1998, Balkema 1998.Google Scholar
  34. C.C. Mei and J.-L. Auriault. The effect of weak inertia on flow through a porous medium. J. Fluid Mech., 222:647–663, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  35. J. Necas. Les Méthodes Mirectes en Théorie des Equations Elliptiques, 1967. Masson, Paris.Google Scholar
  36. R.I. Nigmatulin. Three-dimensional averaging in the mechanics of heterogeneous media. Fluid Mechanics, 10(4):72–107, 1981.zbMATHGoogle Scholar
  37. M. Quintard and S. Whitaker. Transport in ordered and disordered porous media: volume-averaged equations, closure problems, and comparison with experiments. Chem. Eng. Sci., 48(14):2537–2564, 1993.CrossRefGoogle Scholar
  38. M. Rasoloarijaona and J.-L. Auriault. Nonlinear seepage flow through a rigid porous medium. Eur. J. Mech. B/Fluids, 13:177–195, 1994.zbMATHMathSciNetGoogle Scholar
  39. E. Sanchez-Palencia. Comportement local et macroscopique d’un type de milieux physiques hétérogènes. Int. J. Eng. Sci., 12:331–351, 1974 (in French).CrossRefMathSciNetzbMATHGoogle Scholar
  40. E. Sanchez-Palencia. Nonhomogeneous Media and Vibration Theory, lecture notes in Physics no. 127, 1980. Springer, Berlin.Google Scholar
  41. E. Sanchez-Palencia. Boundary layers and edge effects in composite. In E. Sanchez-palencia and A. Zaoui, editors, Homogenization Technique for Composite Media. Lecture Notes in Physics 272, Springer, 1987.Google Scholar
  42. E. Skjetne and J.-L. Auriault. New insights on steady, nonlinear flow in porous media. Eur. J. Mech. B/Fluids, 18(1):131–145, 1999a.zbMATHCrossRefMathSciNetGoogle Scholar
  43. E. Skjetne and J.-L. Auriault. Homogenization of wall-slip gas flow. Transport in porous Media, 36(3):293–306, 1999b.CrossRefMathSciNetGoogle Scholar
  44. N.A. Tsytovich and Y.K. Zaretskij. The development of the theory of soil consolidation in the USSR 1917–1967. Geotechnique, 19(3):357–375, 1969.CrossRefGoogle Scholar
  45. J.-C. Wodie and T. Levy. Correction non linéaire de la loi de Darcy. C R. Acad. Sci. Paris, II, 312:157–161, 1991.zbMATHMathSciNetGoogle Scholar
  46. A. Zaoui. Approximate statistical modelling and applications. In Lecture Notes in Physics 272, Homogenization Techniques for Composite Media. Springer Verlag, Berlin, 338–397, 1987.Google Scholar
  47. C. Zarcone and R. Lenormand. Détermination expérimental du couplage visqueux dans les écoulements diphasiques en milieux poreux. C. R. Acad. Sci. Paris, II, 318:1429–1435, 1994.Google Scholar

Copyright information

© CISM, Udine 2005

Authors and Affiliations

  • Jean-Louis Auriault
    • 1
  1. 1.Laboratoire Sols, Solides, structures (3S), UJF, INPG, CNRS UMR 5521GrenobleFrance

Personalised recommendations