Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 483))

Abstract

We give a review of the main ideas and methods of the wave-turbulence theory and their applications to geophysical fluid dynamics. After having introduced the basic hypotheses leading to kinetic equations for ensembles of weakly nonlinear waves we explain the methods of finding stationary solutions, both for isotropic and weakly anisotropic dispersion relations. We then show how the method can be applied to waves in the atmosphere and ocean and review the known results in this area. Turbulence of the short inertia-gravity waves in the rotating shallow water model is considered at tempered latitudes and in the tropical region, and corresponding stationary spectra are found. Turbulence of the Rossby waves in the same model is also reviewed. Finally, the problem of turbulence of weakly nonlinear internal gravity waves in the continuously stratified fluid is addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • J. T. Bacmeister et al, J. Geoph. Res. D, 5101: 9441–9441, 1996.

    Article  Google Scholar 

  • A.M. Balk and S.V. Nazarenko, Sov. Phys. JETP, 97: 1827–1845, 1990.

    MathSciNet  Google Scholar 

  • D.J. Benney and P.G. Saffman, Proc. R. Soc. A, 289: 301–320, 1966.

    Google Scholar 

  • D.J. Benney and A.C. Newell, Stud. Appl. Math., 48: 29–35, 1969.

    MATH  Google Scholar 

  • P. Caillol and V. Zeitlin, Dyn. Atmos. Oceans, 32: 81–112, 2000, Erratum: 33: 325–326, 2000.

    Article  Google Scholar 

  • S. Daubner and V. Zeitlin, Phys. Letters A, 214: 33–39, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  • F.E. Falkovich and Medvedev, S.B. Europhys. Lett., 19: 279–284, 1992.

    Google Scholar 

  • A.A. Galeev and V.I. Karpman, Sov. Phys. JETP, 44: 592, 1963.

    Google Scholar 

  • K. Hasselmann, Proc. R. Soc. A, 299: 77–100, 1967.

    Google Scholar 

  • B.B. Kadomtsev and V.M. Kontorovich, The theory of turbulence in hydrodynamics and plasma, Sov. Phys. Radiophysics, 18: 511–540, 1974.

    Google Scholar 

  • A.V. Kats and V.M. Kontorivich, V.M., Sov. Phys. JETP, 37: 80–85; 1974 (Sov. Phys. JETP, 38: 102–107, 1973).

    Google Scholar 

  • K. Kenyon, Notes on the 1964 Summer Study Programme on GFD at WHOI, 11; 69, 1964.

    Google Scholar 

  • E.A. Kuznetsov, Sov. Phys. JETP, 35; 310–314, 1972.

    Google Scholar 

  • J. Le Sommer, G.M. Reznik, and V. Zeitlin, J. Fluid. Mech., 515: 35–170, 2004.

    Article  Google Scholar 

  • M. Longuet-Higgins and A.E. Gill, Proc. R. Soc. A, 299: 120–140, 1967.

    Google Scholar 

  • S.B. Medvedev and V. Zeitlin, Phys. Letters A, submitted, 2004.

    Google Scholar 

  • A.S. Monin and L.I. Piterbarg, Sov. Phys. Doklady, 32: 622–624, 1987.

    MATH  Google Scholar 

  • P. Müller et al, Rev. Geophys., 24: 493–536, 1986.

    Google Scholar 

  • D. Olbers, J. Fluid Mech., 74: 375–379, 1976.

    Article  MATH  Google Scholar 

  • E.N. Pelinovsky and M.A. Raevsky, Atm. Ocean Phys.-Izvestija, 13: 187–193, 1977.

    Google Scholar 

  • G.M. Reznik and T.E. Soomere, Sov. Phys. Oceanology, 23:923–927, 1983.

    Google Scholar 

  • G.M. Reznik, Sov. Phys. Oceanology, 25: 869–873, 1984.

    Google Scholar 

  • G.M. Reznik,, V. Zetlin and M. Ben Jelloul, J. Fluid Mech., 445: 93–120, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  • R.Z. Sagdeev and A.A. Galeev, Nonlinear plasma theory, Benjamin, NY, 1969.

    Google Scholar 

  • S.V. Volotsky, A.V. Kats, and V.M. Kontorovich, Proceedings of the Ukranian Akademy of Science (in Russian), 11: 66–69, 1980.

    Google Scholar 

  • G.M. Zaslavsky and R.Z. Sagdeev, Sov. Phys. JETP, 52: 1081, 1967.

    Google Scholar 

  • V.E. Zakharov, Kolmogorov spectra in weak turbulence problems, in “Handbook of Plasma Physics”, Rozenbluth, M.N., Sagdeev, R.Z., Eds, 2: 3–36, 1984.

    Google Scholar 

  • V.E. Zakharov and N.N. Filonenko, Sov. Phys. Doklady, 170: 1292, 1966.

    Google Scholar 

  • V.E. Zakharov and L.I. Piterbarg, Sov. Phys. Doklady, 32: 560, 1987.

    MATH  Google Scholar 

  • V.E. Zakharov, V.S. L’vov and G. Falkovich, Kolmogorov spectra of turbulence I, Springer, Berlin, 1992.

    MATH  Google Scholar 

  • V. Zeitlin, Phys. Lett. A, 164: 177–183, 1992.`

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 CISM, Udine

About this chapter

Cite this chapter

Zeitlin, V. (2005). Wave Turbulence with Applications to Atmospheric and Oceanic Waves. In: Grimshaw, R. (eds) Nonlinear Waves in Fluids: Recent Advances and Modern Applications. CISM International Centre for Mechanical Sciences, vol 483. Springer, Vienna. https://doi.org/10.1007/3-211-38025-6_5

Download citation

  • DOI: https://doi.org/10.1007/3-211-38025-6_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-25259-8

  • Online ISBN: 978-3-211-38025-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics