Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 483))

Abstract

This chapter describes weakly nonlinear wave packets. The primary model equation is the nonlinear Schrödinger (NLS) equation. Its derivation is presented for two systems: the Korteweg-de Vries equation and the water-wave problem. Analytical as well as numerical results on the NLS equation are reviewed. Several applications are considered, including the study of wave stability. The bifurcation of waves when the phase and the group velocities are nearly equal as well as the effects of forcing on the NLS equation are discussed. Finally, recent results on the effects of dissipation on the NLS equation are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • M.J. Ablowitz and B.M. Herbst, On homoclinic structure and numerically induced chaos for the nonlinear Schrödinger equation. SIAM Journal of Applied Mathematics, 50:339–351, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  • T. Akylas, On the excitation of nonlinear water waves by a moving pressure distribution oscillating at resonant frequency. Phys. Fluids, 27:2803–2807, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  • T. Akylas, Envelope solitons with stationary crests. Phys. Fluids A, 5:789–791, 1993.

    Article  MATH  Google Scholar 

  • T. Akylas, F. Dias, and R. Grimshaw, The effect of the induced mean flow on solitary waves in deep water. J. Fluid Mech., 355:317–328, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  • J.S. Barnard, J.J. Mahony, and W.G. Pritchard, The excitation of surface waves near a cut-off frequency. Phil Trans. R. Soc. London A, 286:87–123, 1977.

    MathSciNet  Google Scholar 

  • T.B. Benjamin and J.E. Feir, The disintegration of wavetrains in deep water. Part 1. J. Fluid Mech., 27:417–430, 1967.

    Article  MATH  Google Scholar 

  • D.J. Benney and A.C. Newell, The propagation of nonlinear wave envelopes. J. Math, and Phys., 46:133–139, 1967.

    MATH  MathSciNet  Google Scholar 

  • T. J. Bridges, A geometric formulation of the conservation of wave action and its implications for signature and the classification of instabilities. Proc. Roy. Soc. London Ser. A, 453:1365–1395, 1997.

    MATH  MathSciNet  Google Scholar 

  • T. Bridges, P. Christodoulides, and F. Dias, Spatial bifurcations of interfacial waves when the phase and group velocities are nearly equal. J. Fluid Mech., 295:121–158, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  • T. J. Bridges and F. Dias, On the enhancement of the Benjamin-Feir instability due to dissipation. preprint, 2004.

    Google Scholar 

  • T.J. Bridges and A. Mielke, A proof of the Benjamin-Feir instability. Arch. Rat. Mech. Anal, 133:145–198, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  • R.A. Cairns, The role of negative energy waves in some instabilities of parallel flows. J. Fluid Mech., 92:1–14, 1979.

    Article  MATH  Google Scholar 

  • T. Colin, F. Dias, and J.-M. Ghidaglia, On rotational effects in the modulations of weakly nonlinear water waves over finite depth. Eur. J. Mech. B/Fluids, 14:775–793, 1995.

    MATH  MathSciNet  Google Scholar 

  • W. Craig, C. Sulem, and P.L. Sulem, Nonlinear modulation of gravity waves: a rigorous approach. Nonlinearity, 5:497–522, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  • A.D.D. Craik, Wave Interactions and Fluid Flows. Cambridge University Press, 1988.

    Google Scholar 

  • F. Dias and G. Iooss, Capillary-gravity solitary waves with damped oscillations. Physica D, 65:399–423, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  • F. Dias and G. Iooss, Capillary-gravity interfacial waves in deep water. Europ. J. Mech. B, 15:367–390, 1996.

    MATH  MathSciNet  Google Scholar 

  • F. Dias and G. Iooss, Water waves as a spatial dynamical system. In Handbook of Mathematical Fluid Dynamics, Vol. 2, Ed. S. Friedlander and D. Serre, Elsevier, pages 443–449, 2003.

    Google Scholar 

  • F. Dias and C. Kharif, Nonlinear gravity and capillary-gravity waves. Annu. Rev. of Fluid Mech., 31:301–346, 1999.

    Article  MathSciNet  Google Scholar 

  • F. Dias, D. Menasce, and J.M. Vanden-Broeck, Numerical study of capillary-gravity solitary waves. Europ. J. Mech. B/Fluids, 15:17–36, 1996.

    MATH  MathSciNet  Google Scholar 

  • K.B. Dysthe, Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. Proc. R. Soc. Lond. A, 369:105–114, 1979.

    MATH  Google Scholar 

  • J.L. Hammack and D.M. Henderson, Resonant interactions among surface water waves. Annu. Rev. Fluid Mech., 25:55–97, 1993.

    Article  MathSciNet  Google Scholar 

  • S.J. Hogan, The fourth-order evolution equation for deep-water gravity-capillary waves. Proc. R. Soc. Lond. A, 402:359–372, 1985.

    MATH  Google Scholar 

  • G. Iooss and K. Kirchgässner, Bifurcation d’ondes solitaires en présence d’une faible tension superficielle. C. R. Acad. Sci. Paris, Série I, 311:265–268, 1990.

    MATH  Google Scholar 

  • G. Iooss and P. Kirrmann, Capillary gravity waves on the free surface of an inviscid fluid of infinite depth. Existence of solitary waves. Arch. Rat. Mech. Anal, 136:1–19, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  • G. Iooss and M.-C. Pérouème, Perturbed homoclinic solutions in reversible 1:1 resonance fields. Journal of Differential Equations, 102:62–88, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  • K. Kirchgässner, Nonlinearly resonant surface waves and homoclinic bifurcation. Adv. Applied Mech., 26:135–181, 1988.

    MATH  Google Scholar 

  • V.P. Krasitskii, Canonical transformation in a theory of weakly nonlinear waves with a nondecay dispersion law. Sov. Phys. JETP, 71:921–927, 1990.

    Google Scholar 

  • O. Laget and F. Dias, Numerical computation of capillary-gravity interfacial solitary waves. J. Fluid Mech., 349:221–251, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  • B.M. Lake, H.C. Yuen, H. Rungaldier, and W.E. Ferguson, Nonlinear deep-water waves: theory and experiment. Part 2. Evolution of a continuous wave train. J. Fluid Mech., 83:49–74, 1977.

    Article  Google Scholar 

  • H. Lamb, Hydrodynamics. Dover Publications, 1932.

    Google Scholar 

  • M.J. Lighthill M. J., Waves in fluids. Cambridge University Press, 1978.

    Google Scholar 

  • M. Longuet-Higgins, Capillary-gravity waves of solitary type on deep water. J. Fluid Mech., 200:451–70, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  • M.S. Longuet-Higgins, Capillary-gravity waves of solitary type and envelope solitons on deep water. J. Fluid Mech., 252:703–711, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  • R.S. MacKay, Movement of eigenvalues of Hamiltonian equilibria under non-Hamiltonian perturbation. Phys. Lett A, 155:266–268, 1991.

    Article  MathSciNet  Google Scholar 

  • R.S. MacKay and P. Saffman, Stability of water waves. Proc. Roy. Soc. London Ser. A, 406:115–125, 1986.

    MATH  MathSciNet  Google Scholar 

  • A. Mielke, Steady flows of inviscid fluids under localized perturbations. J. Diff. Eq., 65:89–116, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  • L.M. Milne-Thomson, Theoretical hydrodynamics. Dover Publications, 1968.

    Google Scholar 

  • M. Onorato, A.R. Osborne, M. Serio, and S. Bertone, Freak waves in random oceanic sea states. Phys. Rev. Lett., 86:5831–5834, 2001.

    Article  Google Scholar 

  • A.R. Osborne, M. Onorato, and M. Serio, The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains. Phys. Lett. A, 275:386–393, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  • E. Părăau and F. Dias, Ondes solitaires forcées de capillarité-gravité. C. R. Acad. Sci. Pans I, 331:655–660, 2000.

    Google Scholar 

  • E. Părăau and F. Dias, Nonlinear effects in the response of a floating ice plate to a moving load. J. Fluid Mech., 460:281–305, 2002.

    Article  MathSciNet  Google Scholar 

  • D.H. Peregrine, Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. B, 25:16–43, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  • O.M. Phillips, Wave interactions — the evolution of an idea. J. Fluid Mech., 106:215–227, 1981.

    Article  MATH  Google Scholar 

  • O.M. Rayleigh Lord, Proc. London Math. Soc, 15:69, 1883.

    Article  Google Scholar 

  • G. Schneider, Approximation of the Korteweg-de Vries equation by the nonlinear Schrödinger equation. Journal of Differential Equations, 147:333–354, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  • H. Segur, D. Henderson, J. Hammack, C.-M. Li, D. Pheiff, and K. Socha, Stabilizing the Benjamin-Feir instability. preprint, 2004.

    Google Scholar 

  • M. Stiassnie, Note on the modified nonlinear Schrödinger equation for deep water waves. Wave Motion, 6:431–433, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  • J.J. Stoker, Water waves, the mathematical theory with applications. Wiley-Interscience, 1958.

    Google Scholar 

  • C. Sulem and P.-L. Sulem, The nonlinear Schrödinger equation. Springer, 1999.

    Google Scholar 

  • S.M. Sun, Some analytical properties of capillary-gravity waves in two-fluid flows of infinite depth. Proc. R. Soc. London Ser. A, 453:1153–1175, 1997.

    MATH  Google Scholar 

  • J.-M. Vanden-Broeck and F. Dias, Gravity-capillary solitary waves in water of infinite depth and related free-surface flows. J. Fluid Mech., 240:549–557, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  • J.A.C. Weideman and B.M. Herbst, Split-step methods for the solution of the nonlinear Schrödinger equation. SIAM Journal of Numerical Analysis, 23:485–507, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  • G.B. Whitham, Linear and nonlinear waves. Wiley-Interscience, 1974.

    Google Scholar 

  • T.S. Yang and T.R. Akylas, On asymmetric gravity-capillary solitary waves. J. Fluid Mech., 330:215–232, 1997.

    Article  MATH  Google Scholar 

  • V.E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid. Zh. Prikl. Mekh. Tekh. Fiz., 9:86–94, 1968 (Transl. in J. Appl. Mech. Tech. Phys., 9:190–194, 1968).

    Google Scholar 

  • V.E. Zakharov and A.B. Shabat, Exact theory of two-dimensional self-modulating waves in non-linear media. Zh. Eksp. Teor. Fiz., 61:118, 1971 (Transl. in J. Exp. Theor. Phys., 34:62–69, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 CISM, Udine

About this chapter

Cite this chapter

Dias, F., Bridges, T. (2005). Weakly Nonlinear Wave Packets and the Nonlinear Schrödinger Equation. In: Grimshaw, R. (eds) Nonlinear Waves in Fluids: Recent Advances and Modern Applications. CISM International Centre for Mechanical Sciences, vol 483. Springer, Vienna. https://doi.org/10.1007/3-211-38025-6_2

Download citation

  • DOI: https://doi.org/10.1007/3-211-38025-6_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-25259-8

  • Online ISBN: 978-3-211-38025-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics