Skip to main content

Evolution theory system theory game theory Biocentric Modeling

  • Chapter
Beyond Art: A Third Culture

Abstract

Mathematical abstraction unquestionably represents the non plus ultra of technology transfer. Therefore it is not surprising that the nnost radically diverse thinker of the twentieth century was a mathematician: the Hungarian John von Neumann. He quite consciously cultivated this diversity, which led him apparently effortlessly from mathematical logic to quantum physics or from hydrodynamics to meteorology At times it seems that he directed his interests toward a new field precisely because it was different than anything he had ever done before. For this reason, it would have greatly fascinated him that two completely separate fields, which he created, have grown together in a surprisingly natural way. First, there is game theory, which he (and his Austrian friend, Oskar Morgenstern) created as a tool for economics. Second, there are the models for artificial life, which his Polish friend, Stanislav Ulam, suggested and which von Neumann designed, using cellular automatons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ludwig von Bertalanffy, “Die Biophysik offener Systeme,” Naturwissenschaftliche Rundschau (18: 1965) 467–469.

    Google Scholar 

References

  • David Cesarani, Arthur Koestler. The Homeless Mind (Free Press, 1999)

    Google Scholar 

  • Christian Buchard, Arthur Koestler. ein extremes leben (Beck, 2004)

    Google Scholar 

References

  • M.D. Mesarovic, D. Macko, Y. Takahara, Theory of Hierarchical, Multilevel Systems (New York: Academic Press Inc., 1970).

    Google Scholar 

  • Herbert A. Simon, “The Architecture of Complexity,” Proceedings of the American Philosophical Society, 106: 6 (December 1962).

    Google Scholar 

References

  • Tanja Frank, ed., Ernő Kállai, Vision und Formgesetz. Aufsätze über Kunst und Künstler von 1921 bis 1933 (Leipzig/Weimar: Akademie der bildenden Künste der DDR, 1986).

    Google Scholar 

  • Wulf Herogenrath, Bauhaus Utopien (Stuttgart, 1988).

    Google Scholar 

References

  • Zoltan Kemeny, les donations de Madeleine Kemeny (Paris: Édition du Centre Pompidou, 2004).

    Google Scholar 

References

  • Alexandra Foitl, Fritz Hartlauer, (Graz: Neue Galerie am Landesmuseum Joanneum, 1995).

    Google Scholar 

References

  • L. Beke, Zsuzsa Varga, eds., Kozma Layos (Budapest: Akadémiai Kiadó, 1968).

    Google Scholar 

  • L. Beke, Scháar Erzsébet (Budapest: Corvina, 1973).

    Google Scholar 

  • L. Beke, Moholy-Nagy László munkássága (Budapest: Corvina, 1980).

    Google Scholar 

  • L. Beke, Caspar David Friedrich (Budapest: Corvina, 1982).

    Google Scholar 

  • L. Beke, Mualkotások elemzése (Budapest: Tankönyvkiadó, 1986).

    Google Scholar 

References

  • Gábor Pataki, Lossonczy Tamás (Budapest: Új művészet könyvek 8, 1996).

    Google Scholar 

References

  • John von Neumann, Collected Works, vols. I–IV (Pergamon Press, 1961–63).

    Google Scholar 

References

  • Eckehart Köhler, Werner Leinfellner (eds.), Game Theory, Experience, Rationality: Foundations of Social Sciences (Dordrecht-Boston-London: Kluwer, 1997).

    Google Scholar 

  • Eckehart Köhler, Ian Wolenski (eds.), Alfred Traski and the Vienna Circle: Austro-Polish Connections in Logical Empiricism (Dordrecht-Boston-London: Kluwer, 1999.

    Google Scholar 

References

  • R. Axelrod, The Evolution of Cooperation (New York, 1984).

    Google Scholar 

  • J. Hofbauer, K. Sigmund, The Theory of Evolution and Dynamic Systems (Cambridge, 1988).

    Google Scholar 

  • M. Eigen, P. Schuster, The Hypercycle. A Principle of Natural Self-Organization (Berlin. 1979).

    Google Scholar 

  • N. Humphrey, A History of the Mind (New York, 1992).

    Google Scholar 

  • J.C. Harsanyi, “Games with Incomplete Information,” Zeitschrift für Wissenschaftsforschung (9/10: 1995) 5–31.

    Google Scholar 

  • D. Helbing, Quantitative SocioDynamics, Theory and Decision Library (Dordrecht, 1995).

    Google Scholar 

  • W. Leinfellner, Evolutionary Causality, Theory of Games, an Evolution of Intelligence; Concepts and Approaches in Evolutionary Epistemology, F. Wuketits, ed., Theory and Decision Library (Boston, 1984) pp. 233–277.

    Google Scholar 

  • W. Leinfellner, “Ein Plädoyer für die Sozialethik,’ Evolutionäre Ethik zwischen Naturalismus und Idealismus, W. Lütterfelds, ed. (Darmstadt, 1993) pp. 32–65.

    Google Scholar 

  • W. Leinfellner, The New Theory of Evolution: A Theory of Democratic Societies, Revolutionary Changes in Understanding Man and Society, H. Götschl, ed., Theory and Decision Library (Dordrecht, 1995) pp. 149–191.

    Google Scholar 

  • J. Maynard Smith, Evolution and the Theory of Games (Oxford, 1982).

    Google Scholar 

  • O. Morgenstern, J. von Neumann, Theory of Games and Economic Behavior (Princeton UP, 1980).

    Google Scholar 

  • A. Rapoport, Mathematische Methoden in den Sozialwissenschaften (Würzburg 1980); Fights, Games, and Debates (University of Michigan Press, 1997).

    Google Scholar 

  • P. Schuster, K. Sigmund, “Towards a Dynamics of Social Behavior. Strategic and Genetic Models of the Evolution of Animal Conflicts,” J. Social Biol. Struct (8: 1985) 255–277.

    Article  Google Scholar 

  • A. Sen, Collective Choice and Social Welfare (London, 1970).

    Google Scholar 

  • R. Selten, Models of Strategic Rationality (Dordrecht, 1988).

    Google Scholar 

  • K. Sigmund, Games of Life. Explorations in Ecology, Evolution, and Behavior (Oxford, 1993).

    Google Scholar 

References

  • M. Eigen, R. Winkler-Oswatitsch, Das Spiel (Munich: Piper, 1975).

    Google Scholar 

  • M. Eigen, W. Gardiner, P. Schuster, R. Winkler-Oswatitsch, “The Origin of Genetic Information,” Scientific American (244[4]: 1988) 88–118.

    Google Scholar 

  • B.-O Küppers, Der Ursprung biologischer Information (Munich: Piper, 1986).

    Google Scholar 

  • P. Schuster, “Vom Makromolekül zur primitiven Zelle. Die Entstehung biologischer Funktion,” Chemie in unserer Zeit (6: 1972) 1–16.

    Article  Google Scholar 

  • P. Schuster, “Molekulare Evolution an der Schwelle zwischen Chemie und Biologie,“ Evolution der Evolutionstheorie. Von Darwin zur DNA, W. Wieser, ed. (Heidelberg: Spektrum Akademischer Verlag, 1994) pp. 49–76.

    Google Scholar 

  • P. Schuster, “Evolutionary Biotechnology. Theory, Facts, and Perspectives,” Acta Biotechnologica (16: 1996) 3–17.

    Article  Google Scholar 

  • M. Eigen, “Self-organization of Matter and the Evolution of Biological Macromolecules,” Naturwissenschaften (58: 1971) 465–523.

    Article  Google Scholar 

  • M. Eigen, P. Schuster, The Hypercycle. A Principle of Natural Self-organization (Berlin: Springer, 1979).

    Google Scholar 

  • M. Eigen, J. McCaskill, P. Schuster, “The Molecular Quasispecies,” Adv. Chem. Phys. (75: 1989) 149–263.

    Article  Google Scholar 

  • W. Fontana, D.A.M. Konings, P.F. Stadler, P, Schuster, “Statistics of RNA Secondary Structures,” Biopolymers (33: 1993) 1389–1404.

    Article  Google Scholar 

  • J. Hofbauer, P. Schuster, K. Sigmund, “A Note on Evolutionarily Stable Strategies and Game Dynamics,” J.Theor.Biol. (81: 1979) 609–612.

    Article  Google Scholar 

  • M.A. Huynen, P.F. Stadler, W, Fontana, “Smoothness within Ruggedness. The Role of Neutrality in Adaptation,” Proc. Natl.Acad. Sci. USA (93: 1996) 397–401.

    Article  Google Scholar 

  • M. Kimura, The Neutral Theory of Molecular Evolution (Cambrigde, UK: Cambridge UP, 1983).

    Google Scholar 

  • P. Schuster, K. Sigmund, “Replicator Dynamics,” J. Theor. Biol. (100: 1983) 533–538.

    Article  Google Scholar 

  • P. Schuster, W. Fontana, P.F. Stadler, I.L. Hofacker, “From Sequences to Shapes and Back. A Case Study in RNA Secondary Structures,” Proc. Roy. Soc. (London, 1994) 279–284.

    Google Scholar 

  • S. Spiegelman, “An Approach to the Experimental Analysis of Precellular Evolution,” Quart. Rev. Biophys (4: 1971) 213–253.

    Article  Google Scholar 

  • S. Wright, “The Roles of Mutation, Inbreeding, Cross-breeding, and Selection in Evolution,” Int. Proceedings of the Sixth International Congress on Genetics, D.F. Jones, ed., vol. 1 (1932) 356–366.

    Google Scholar 

References

  • M.A. Novak and R.M. May, “Evolutionary Games and Spatial Chaos,” Nature (359: 1992) 826–829.

    Article  Google Scholar 

  • M.A. Novak and R.M. May, “The Spatial Dilemmas of Evolution,” International Journal of Bifurcation and Chaos (3: 1993) 35–78.

    Article  Google Scholar 

  • M.A. Novak, S. Bonhoeffer, and R.M. May, “Spatial Games and the Maintenance of Cooperation,” Proceedings of the National Academy of Science (91: 1994) 4877–4881.

    Article  Google Scholar 

  • M.A. Novak, R.M. May, and Karl Sigmund, The Arithmethics of Mutual Help,” Scientific American (1995) 76–81.

    Google Scholar 

References

  • K. Sigmund, “On Prisoners and Cells,” Nature (359: 1992) 786

    Article  Google Scholar 

  • K. Sigmund, Spielpläne. Strategien und Chaos in der Evolution (Hamburg: Hoffmann und Campe, 1995).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag/Wien

About this chapter

Cite this chapter

Pichler, F. et al. (2007). Evolution theory system theory game theory Biocentric Modeling. In: Beyond Art: A Third Culture. Springer, Vienna. https://doi.org/10.1007/3-211-37846-4_7

Download citation

  • DOI: https://doi.org/10.1007/3-211-37846-4_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-24562-0

  • Online ISBN: 978-3-211-37846-5

Publish with us

Policies and ethics