Skip to main content

Anatomische und biomechanische Charakeristika des Sprunggelenks und der Sprunggelenk-Endoprothetik

  • Chapter
Endoprothetik des Sprunggelenks
  • 590 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 209.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 269.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Barnett CH, Napier JR (1952) The axis of rotation at the ankle joint in man. Its influence upon the form of the talus and mobility of the fibula. J Anatomy 86: 1–9

    CAS  Google Scholar 

  2. Bartel DL, Bicknell VL, Wright TM (1986) The effect of conformity, thickness, and material on stresses in ultra-high molecular weight components for total joint replacement. J Bone Joint Surg Am 68: 1041–1051

    PubMed  CAS  Google Scholar 

  3. Bartel DL, Burstein AH, Toda MD, Edwards DL (1985) The effect of conformity and plastic thickness on contact stresses in metal-backed plastic implants. J Biomech Eng 107: 193–199

    Article  PubMed  CAS  Google Scholar 

  4. Bartel DL, Rawlinson JJ, Burstein AH, Ranawat CS, Flynn WF, Jr. (1995) Stresses in polyethylene components of contemporary total knee replacements. Clin Orthop 317: 76–82

    PubMed  Google Scholar 

  5. Baumhauer JF, Alosa DM, Renstroem PA, Trevino S, Beynnon B (1995) A prospective study of ankle injury risk factors. Am J Sports Med 23: 564–570

    PubMed  CAS  Google Scholar 

  6. Beaudoin AJ, Fiore WR, Krause WR (1991) Effect of isolated talocalcaneal fusion on contact in the ankle and talonavicular joints. Foot Ankle 12: 19–25

    PubMed  CAS  Google Scholar 

  7. Boss AP, Hintermann B (2002) Anatomical study of the medial ankle ligament complex. Foot Ankle Int 23: 547–553

    PubMed  Google Scholar 

  8. Buechel FF, Pappas MJ, Iorio LJ (1988) New Jersey low contact stress total ankle replacement: biomechanical rationale and review of 23 cementless cases. Foot Ankle 8: 279–290

    PubMed  CAS  Google Scholar 

  9. Burge PD, Evans M (1986) Effect of surface replacement arthroplasty on stability of the ankle. Foot Ankle 7: 10–17

    PubMed  CAS  Google Scholar 

  10. Calderale PM, Garro A, Barbiero R, Fasolio G, Pipino F (1983) Biomechanical design of the total ankle prosthesis. Eng Med 12: 69–80

    PubMed  CAS  Google Scholar 

  11. Calhoun JH, Li F, Ledbetter BR, Viegas SF (1994) A comprehensive study of pressure distribution in the ankle joint with inversion and eversion. Foot Ankle Int 15: 125–133

    PubMed  CAS  Google Scholar 

  12. Cameron HU, Pilliar RM, Macnab I (1976) The rate of bone ingrowth into porous metal. J Biomed Mater Res 10: 295–302

    Article  PubMed  CAS  Google Scholar 

  13. Cass J, Morrey EY, Chao EY (1984) Three-dimensional kinematics of ankle instability following serial sectioning of lateral collateral ligaments. Foot Ankle 5: 142–149

    PubMed  CAS  Google Scholar 

  14. Cass JR, Settles H (1994) Ankle instability: in vitro kinematics in response to axial load. Foot Ankle Int 15: 134–140

    PubMed  CAS  Google Scholar 

  15. Close JR (1956) Some applications of the functional anatomy of the ankle joint. J Bone Joint Surg Am 38: 761–781

    PubMed  Google Scholar 

  16. Colville MR, Marder RA, Boyle JJ, Zarins B (1990) Strain measurement in lateral ankle ligaments. Am J Sports Med 18: 196–200

    PubMed  CAS  Google Scholar 

  17. Deland JT, Morris GD, Sung IH (2000) Biomechanics of the ankle joint. A perspective on total ankle replacement. Foot Ankle Clin 5: 747–759

    PubMed  CAS  Google Scholar 

  18. Ewald FC, Walker PS (1988) The current status of total knee replacement. Rheum Dis Clin North Am 14: 579–590

    PubMed  CAS  Google Scholar 

  19. Falsig J, Hvid I, Jensen N (1986) Finite element stress analysis of some ankle joint prostheses. Clin Biomech 1: 71–76

    Article  Google Scholar 

  20. Gill LH (2002) Principles of joint arthroplasty as applied to the ankle. AAOS Instructional Course Lect, chap 13, pp 117–128

    Google Scholar 

  21. Grath G (1960) Widening of the ankle mortise. A clinical and experimental study. Acta Orthop Scand 263(Suppl): 1–88

    Google Scholar 

  22. Harper MC (1987) Deltoid ligament: an anatomical evaluation of function. Foot Ankle 8: 19–22

    PubMed  CAS  Google Scholar 

  23. Hicks JH (1953) The mechanics of the foot. 1. The joints. J Anatomy 87: 345–357

    CAS  Google Scholar 

  24. Hintermann B, Nigg BM (1995) In vitro kinematics of the loaded ankle/foot complex in response to dorsi-/plantar flexion. Foot Ankle Int 16: 514–518

    PubMed  CAS  Google Scholar 

  25. Hintermann B, Nigg BM, Sommer C, Cole GK (1994) Transfer of movement between calcaneus and tibia in vitro. Clin Biomech 9: 349–355

    Google Scholar 

  26. Hintermann B, Sommer C, Nigg BM (1995) The influence of ligament transection on tibial and calcaneal rotation with loading and dorsi-/plantar flexion. Foot Ankle Int 9: 567–571

    Google Scholar 

  27. Hollis JM, Blasier RD, Flahiff CM (1995) Simulated lateral ankle ligamentous injury. Change in ankle stability. Am J Sports Med 23: 672–677

    PubMed  CAS  Google Scholar 

  28. Hvid I, Rasmussen O, Jensen NC, Nielsen S (1985) Trabecular bone strength profiles at the ankle joint. Clin Orthop 199: 306–312

    PubMed  Google Scholar 

  29. Inman VT (1991) The joints of the ankle, 2nd ed. Williams & Wilkins, Baltimore, pp 31–74

    Google Scholar 

  30. Johnson EE, Markolf KL (1983) The contribution of the anterior talofibular ligament to the ankle laxity. J Bone Joint Surg Am 65: 81–88

    PubMed  CAS  Google Scholar 

  31. Kempson GE, Freeman MA, Tuk MA (1975) Engineering considerations in the design of an ankle joint. Biomed Eng 10: 166–180

    PubMed  CAS  Google Scholar 

  32. Knupp M, Magerkurth O, Ledermann HP, Hintermann B: The surgical tibiotalar angle — a radiological study. Foot Ankle Int (im Druck)

    Google Scholar 

  33. Leardini A (2001) Geometry and mechanics of the human ankle complex and ankle prosthesis design. Clin Biomech 16: 706–709

    Article  CAS  Google Scholar 

  34. Leardini A, O’Connor JJ, Catani F, Giannini S (1999) A geometric model of the human ankle joint. J Biomech 32: 585–591

    PubMed  CAS  Google Scholar 

  35. Leardini A, O’Connor JJ, Catani F, Giannini S (2000) The role of the passive structures in the mobility and stability of the human ankle joint: a literature review. Foot Ankle Int 21: 602–615

    PubMed  CAS  Google Scholar 

  36. Levens AS, Berkeley CE, Inman VT, Blosser JA (1948) Transverse rotation of the segments of the lower extremity in locomotion. J Bone Joint Surg Am 30: 859–872

    Google Scholar 

  37. Lewis G (1994) The ankle joint prosthetic replacement: clinical performance and research challenges. Foot Ankle Int 15: 471–476

    PubMed  CAS  Google Scholar 

  38. Lindsjo U, Danckwardt-Lilliestrom G, Sahlstedt B (1985) Measurement of the motion range in the loaded ankle. Clin Orthop 199: 68–71

    PubMed  Google Scholar 

  39. Locke M, Perry J, Campbell J (1984) Ankle and subtalar motion during gait in arthritic patients. Phys Ther 64: 504–509

    PubMed  CAS  Google Scholar 

  40. Lowery RB (1995) Fractures of the talus and os calcis. Opin Orthop 6: 25–34

    Google Scholar 

  41. Lundberg A (1989) Kinematics of the ankle and foot. In vitro stereophotogrammetry. Acta Orthop Scand 60(Suppl 233): 1–24

    Google Scholar 

  42. Lundberg A, Goldie I, Kalin B, Selvik G (1989) Kinematics of the ankle/foot complex, part 1: Plantar flexion and dorsi-flexion. Foot Ankle 9: 194–200

    PubMed  CAS  Google Scholar 

  43. Lundberg A, Svennson OK, Nemeth G, Selvik G (1989) The axis of rotation of the ankle joint. J Bone Joint Surg Br 71: 94–99

    PubMed  CAS  Google Scholar 

  44. Macko VW, Matthews LS, Zwirkoski P (1991) The jointcontact area of the ankle. J Bone Joint Surg Br 73: 347–351

    CAS  Google Scholar 

  45. Markolf KL, Barger WL, Shoemaker SC, Amstutz HC (1981) The role of joint load in knee stability. J Bone Joint Surg Am 63: 570–585

    PubMed  CAS  Google Scholar 

  46. McCullough CJ, Burge PD (1980) Rotatory stability of the load-bearing ankle. An experimental study. J Bone Joint Surg Br 62: 460–464

    PubMed  Google Scholar 

  47. Michelson JD, Clarke HJ, Jinnah RH (1990) The effect of loading on tibiotalar alignment in cadaver ankles. Foot Ankle 10: 280–284

    PubMed  CAS  Google Scholar 

  48. Michelson JD, Hamel AJ, Buczek FL, Sharkey NA (2002) Kinematic behavior of the ankle following malleolar fracture repair in a high-fidelity cadaver model. J Bone Joint Surg Am 84: 2029–2038

    PubMed  Google Scholar 

  49. Michelson JD, Helgemo SLJ (1995) Kinematics of the axially loaded ankle. Foot Ankle Int 16: 577–582

    PubMed  CAS  Google Scholar 

  50. Michelson JD, Schmidt GR, Mizel MS (2000) Kinematics of a total arthroplasty of the ankle: comparison to normal ankle motion. Foot Ankle Int 21: 278–284

    PubMed  CAS  Google Scholar 

  51. Milner CE, Soames RW (1998) Anatomy of the collateral ligaments of the human ankle joint. Foot Ankle Int 19: 757–760

    PubMed  CAS  Google Scholar 

  52. Milner CE, Soames RW (1998) The medial collateral ligaments of the human ankle joint: anatomical variations. Foot Ankle Int 19: 289–292

    PubMed  CAS  Google Scholar 

  53. Murray MP, Drought AB, Kory RC (1964) Walking patterns of normal men. J Bone Joint Surg Am 46: 335–349

    PubMed  CAS  Google Scholar 

  54. Rasmussen O, Kroman-Andersen C, Boe S (1983) Deltoid ligament: functional analysis of the medial collateral ligamentous apparatus of the ankle joint. Acta Orthop Scand 54: 36–44

    PubMed  CAS  Google Scholar 

  55. Rasmussen O, Tovberg-Jensen I (1982) Mobility of the ankle joint: recording of rotatory movements in the talocrural joint in vitro with and without the lateral collateral ligaments of the ankle. Acta Orthop Scand 53: 155–160

    PubMed  CAS  Google Scholar 

  56. Renstrom P, Wertz M, Incavo S, Pope M, Ostgaard HC, Arms S, Haugh L (1988) Strain in the lateral ligaments of the ankle. Foot Ankle 9: 59–63

    PubMed  CAS  Google Scholar 

  57. Roaas A, Andersson GB (1982) Normal range of motion of the hip, knee and ankle joints in male subjects, 30–40 years of age. Acta Orthop Scand 53: 205–208

    PubMed  CAS  Google Scholar 

  58. Sammarco GJ, Burstein AH, Frankel VH (1973) Biomechanics of the ankle: a kinematic study. Ortho Clin North Am 4: 75–96

    CAS  Google Scholar 

  59. Sammarco J (1977) Biomechanics of the ankle: surface velocity and instant center of rotation in the sagittal plane. Am J Sports Med 5: 231–234

    PubMed  CAS  Google Scholar 

  60. Sands A, Early J, Sidles J, Sangeorzan BJ (1995) Uniaxial description of hindfoot angular motion before and after calcaneocuboid fusion. Orthop Trans 19: 936–937

    Google Scholar 

  61. Sangeorzan BJ, Sidles J (1995) Hinge-like motion of the ankle and subtalar articulations. Orthop Trans 19: 331–332

    Google Scholar 

  62. Sarrafian SK (1994) Anatomy of foot and ankle, 2nd ed. Lippincott, Philadelphia, pp 239–240

    Google Scholar 

  63. Siegler S, Chen J, Schneck CD (1988) The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joint. J Biomech Eng 110: 364–373

    Article  PubMed  CAS  Google Scholar 

  64. Sommer C, Hintermann B, Nigg BM, Bogert van den AJ (1996) Influence of ankle ligaments on tibial rotation: an in vitro study. Foot Ankle Int 17: 79–84

    PubMed  CAS  Google Scholar 

  65. Stauffer RN, Chao EY, Brewster RC (1977) Force and motion analysis of the normal, diseased, and prosthetic ankle joint. Clin Orthop 127: 189–196

    PubMed  Google Scholar 

  66. Stormont DM, Morrey BF, An KN, Cass JR (1985) Stability of the loaded ankle. Am J Sports Med 13: 295–300

    PubMed  CAS  Google Scholar 

  67. Tarr RR, Resnick CT, Wagner KS (1985) Changes in tibiotalar joint contact areas following experimentally induced tibial angular deformities. Clin Orthop 199: 72–80

    PubMed  Google Scholar 

  68. Valderrabano V, Hintermann B, Dick W (2004) Scandinavian total ankle replacement: a 3.7-year average follow-up of 65 patients. Clin Orthop 424: 47–56

    PubMed  Google Scholar 

  69. Valderrabano V, Hintermann B, Nigg BM, Stefanyshyn D, Stergiou P (2003) Kinematic changes after fusion and total replacement of the ankle, part 1: range of motion. Foot Ankle Int 24: 881–887

    PubMed  Google Scholar 

  70. Valderrabano V, Hintermann B, Nigg BM, Stefanyshyn D, Stergiou P (2003) Kinematic changes after fusion and total replacement of the ankle, part 2: movement transfer. Foot Ankle Int 24: 888–896

    PubMed  Google Scholar 

  71. Valderrabano V, Hintermann B, Nigg BM, Stefanyshyn D, Stergiou P (2003) Kinematic changes after fusion and total replacement of the ankle, part 3: talar movement. Foot Ankle Int 24: 897–900

    PubMed  Google Scholar 

  72. Volz RG, Nisbet JK, Lee RW, McMurtry MG (1988) The mechanical stability of various noncemented tibial components. Clin Orthop 226: 38–42

    PubMed  Google Scholar 

  73. Ward KA, Soames RW (1997) Contact patterns at the tarsal joints. Clin Biomech 12: 496–501

    Article  Google Scholar 

  74. Weseley MS, Koval R, Kleiger B (1969) Roentgen measurement of ankle flexion-extension motion. Clin Orthop 65: 167–174

    PubMed  CAS  Google Scholar 

  75. Wright DG, Desai SM, Henderson WH (1964) Action of the subtalar and ankle-joint complex during the stance phase of walking. J Bone Joint Surg Am 46: 361–382

    PubMed  CAS  Google Scholar 

  76. Wright TM, Bartel DL (1968) The problem of surface damage in polyethylene total knee components. Clin Orthop 205: 67–74

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag/Wien

About this chapter

Cite this chapter

(2005). Anatomische und biomechanische Charakeristika des Sprunggelenks und der Sprunggelenk-Endoprothetik. In: Hintermann, B. (eds) Endoprothetik des Sprunggelenks. Springer, Vienna. https://doi.org/10.1007/3-211-30885-7_4

Download citation

  • DOI: https://doi.org/10.1007/3-211-30885-7_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-23586-7

  • Online ISBN: 978-3-211-30885-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics