Skip to main content

Schizophrenie, Entzündung und glutamaterge Neurotransmission: ein pathophysiologisches Modell

  • Conference paper
Aktuelle Aspekte der Pathogenese und Therapie der Schizophrenie
  • 1082 Accesses

Zusammenfassung

Diese Arbeit soll psychoneuroimmunologische Untersuchungen mit aktuellen Ergebnissen aus pharmakologischen, neurochemischen und genetischen Studien bei Schizophrenie zusammenführen. Schizophrenie ist eine Erkrankung der dopaminergen Neurotransmission, aber die Modulation des dopaminergen Systems durch die glutamaterge Neurotransmission spielt eine wesentliche Rolle. Diese Sicht wird durch Befunde der Neuregulin- und Dysbindin-Gene unterstützt. Diese Gene haben funktionelle Auswirkungen auf das glutamaterge System. Glutamaterge Unterfunktion ist durch den NMDA-Rezeptor-Antagonismus vermittelt. Der einzige bisher nachgewiesene endogene NMDA-Rezeptor-Antagonist ist Kynurenin-Säure. Unabhängig vom NMDA-Rezeptor-Antagonismus blockiert Kynurenin-Säure bereits in geringeren Konzentrationen auch den nikotinergen Acetylcholin-Rezeptor, d.h. höhere Kynurenin-Säure-Spiegel können psychotische Symptome und kognitive Einschränkungen erklären. Kynurenin-Säure-Spiegel wurden bei schizophrenen Patienten im Vergleich zu Kontrollen als höher sowohl im Liquor cerebrospinalis als auch in für die Schizophrenie wesentlichen ZNS-Regionen beschrieben.

Eine Reihe von Befunden legen nahe, dass eine (pränatale) Infektion in die Pathogenese der Schizophrenie involviert ist. Aufgrund eines frühen Sensitivierungsprozesses des Immunsystems oder einer (chronischen) Infektion, die durch das Immunsystem nicht abgewehrt werden kann, kommt es bei der Schizophrenie zu einer Immundysbalance zwischen der Typ-I und der Typ-II Immunantwort. Die Typ-I Immunantwort ist zumindest teilweise gehemmt, während die Typ-II Immunantwort überaktiviert ist. Diese Immunkonstellation ist mit der Hemmung des Enzyms Indoleamin Dioxygenase (IDO) verbunden, denn IDO — die in Astrozyten- und Mikroglia-Zellen lokalisiert ist — wird durch Typ-II Zytokine gehemmt. IDO katalysiert den ersten Schritt im Tryptophan-Metabolismus, die Degradation von Tryptophan zu Kynurenin, ebenso wie die Tryptophan 2,3-Dioxygenase (TDO). Aufgrund der Hemmung von IDO wird Tryptophan-Kynurenin vor allem über TDO metabolisiert, die in Astrozyten lokalisiert ist, nicht in Mikroglia oder anderen ZNS-Zellen. Astrozyten sind besonders bei Schizophrenie aktiviert, was hohe Level von S100B zeigen. Astrozyten haben nicht die enzymatische Ausstattung für den kompletten Kynurenin-Abbau. Aufgrund des Nichtvorhandenseins von Kynurenin-OHase in Astrozyten kann Kynurenin-Säure im ZNS akkumulieren, dementsprechend wurde ein Anstieg der TDO-Aktivität bei Schizophrenie beobachtet. Dieser Mechanismus hat eine Akkumulation von Kynurenin-Säure in kritischen ZNS-Regionen zur Folge. Auf diesem Weg dürfte die Immun-mediierte glutamaterg-dopaminerge Dysregulation zu den klinischen Symptomen der Schizophrenie führen. Therapeutische Konsequenzen, zum Beispiel der Gebrauch von antientzündlichen Cyclooxygenase-II-Inhibitoren, die zusätzlich direkt den Kynurenin-Säure-Spiegel senken, werden diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adler LE, Olincy A, Waldo M, Harris JG, Griffith J, Stevens K (1998) Schizophrenia, sensory gating, and nicotinic receptors. Schizophr Bull 24: 189–202

    PubMed  CAS  Google Scholar 

  • Aloisi F, Penna G, Cerase J, Menendez Iglesias B, Adorini L (1997) IL 12 production by central nervous system microglia is inhibited by astrocytes. J Immunol 159: 1604–1612

    PubMed  CAS  Google Scholar 

  • Aloisi F, Ria F, Adorini L (2000) Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol Today 21: 141–147

    Article  PubMed  CAS  Google Scholar 

  • Andreasen NC, Kezai K, Alliger R, Swayze II VW, Flaum M, Kirchner P (1992) Hypofrontality in neuroleptic-naive patients and in patients with chronic schizophrenia. Arch Gen Psychiatry 49: 943–958

    PubMed  CAS  Google Scholar 

  • Bayer TA, Buslei R, Havas L, Falkai P (1999) Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci Lett 27: 126–128

    Article  Google Scholar 

  • Bechter K, Schreiner V, Herzog S, Breitinger N, Wollinsky KH, Brinkmeier H, Aulkemeyer P, Weber F, Schüttler R (2003) CSF filtration as experimental therapy in therapy-resistant psychoses in Borna disease virus-seropositive patients. Psychiatr Prax 30[Suppl 2]: 216–220

    PubMed  Google Scholar 

  • Bessler H, Levental Z, Karp L, Modai I, Djaldetti M, Weizman A (1995) Cytokine production in drug-free and neuroleptic-treated schizophrenic patients. Biol Psychiatry 38: 297–302

    Article  PubMed  CAS  Google Scholar 

  • Blackwell JM (2001) Genetics and genomics of infectious disease susceptibility. TIMM 7: 521–526

    CAS  Google Scholar 

  • Bleuler E (1911) Dementia praecox oder Gruppe der Schizophrenien. In: Aschaffenburg G (Hrsg) Handbuch der Psychiatrie. Deuticke, Leipzig Wien

    Google Scholar 

  • Boin F, Zanardini R, Pioli R, Altamura CA, Maes M, Gennarelli M (2001) Association between-G308A tumor necrosis factor alpha gene polymorphism and schizophrenia. Mol Psychiatry 6: 79–82

    Article  PubMed  CAS  Google Scholar 

  • Brown AS, Begg MD, Gravenstein S, Schaefer CA, Wyatt RJ, Bresnahan M, Babulas VP, Susser ES (2004a) Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry 61: 774–780

    Article  PubMed  Google Scholar 

  • Brown AS, Hooton J, Schaefer CA, Zhang H, Petkova E, Babulas V, Perrin M, Gorman JM, Susser ES (2004b) Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. Am J Psychiatry 161: 889–895

    Article  PubMed  Google Scholar 

  • Buka SL, Tsuang MT, Torrey EF, Klebanoff MA, Berstein D, Yolken RH (2001) Maternal infections and subsequent psychosis in the offspring. Arch Gen Psychiatry 58: 1032–1037

    Article  PubMed  CAS  Google Scholar 

  • Buonanno A, Fischbach GD (2001) Neuregulin and ErbB receptor signaling pathways in the nervous system. Curr Opin Neurobiol 11(3): 287–296

    Article  PubMed  CAS  Google Scholar 

  • Cannon M, Cotter D, Coffey VP, Sham PC, Takei N, Larkin C, Murray RM, O’Callaghan E (1996) Prenatal exposure to the 1957 influenza epidemic and adult schizophrenia: a follow-up study. Br J Psychiatry 168: 368–371

    Article  PubMed  CAS  Google Scholar 

  • Cannon TD, van Erp TG, Rosso IM, Huttunen M, Lonnqvist J, Pirkola T, Salonen O, Valanne L, Poutanen VP, Standertskjold-Nordenstam CG (2002) Fetal hypoxia and structural brain abnormalities in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry 59: 35–41

    Article  PubMed  Google Scholar 

  • Cardno AG, Marshall EJ, Coid B, Macdonald AM, Ribchester TR, Davies NJ, Venturi P, Jones LA, Lewis SW, Sham PC, Gottesman II, Farmer AE, McGuffin P, Reveley AM, Murray RM (1999) Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch Gen Psychiatry 56: 162–168

    Article  PubMed  CAS  Google Scholar 

  • Carlin JM, Borden EC, Sondel PM, Byrne GI (1989) Interferon-induced indoleamine 2,3-dioxygenase activity in human mononuclear phagocytes. J Leukoc Biol 45: 29–34

    PubMed  CAS  Google Scholar 

  • Carlsson A (1978) Antipsychotic drugs, neurotransmitters, and schizophrenia. Am J Psychiatry 135: 165–173

    PubMed  CAS  Google Scholar 

  • Carlsson A (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacol 1: 179–186

    Article  CAS  Google Scholar 

  • Carlsson A (1998) Schizophrenie und Neurotransmitterstörungen. Neue Perspektiven und therapeutischen Ansätze. In: Möller HJ, Müller N (Hrsg) Schizophrenie — Moderne Konzepte zu Diagnostik, Pathogenese und Therapie. Springer, Wien New York, S 93–116

    Google Scholar 

  • Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML (2001) Interactions between monoamines, glutamate and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 41: 237–260

    Article  PubMed  CAS  Google Scholar 

  • Casolini P, Catalani A, Zuena AR, Angelucci L (2002) Inhibition of COX-2 reduces the age-dependent increase of hippocampal inflammatory markers, corticosterone secretion, and behavioural impairments in the rat. J Neurosci Res 68: 337–343

    Article  PubMed  CAS  Google Scholar 

  • Cazzullo CL, Scarone S, Grassi B, Vismara C, Trabattoni D, Clerici M, Clerici M (1998) Cytokines production in chronic schizophrenia patients with or without paranoid behavior. Prog Neuropsychopharmacol Biol Psychiatry 22: 947–957

    Article  PubMed  CAS  Google Scholar 

  • Ceresoli-Borroni G, Wu HQ, Guidetti P, Rassoulpour A, Roberts AC, Schwarcz R (1999) Chronic haloperidole administration decreases Kynureninurenic acid levels in rat brain. Soc Neurosci Abstr 25: 7278

    Google Scholar 

  • Chiarugi A, Carpenedo R, Moroni F (1996) Kynurenine disposition in blood and brain of mice: effects of selective inhibitors of Kynurenine hydroxylase and Kynureninase. J Neurochem 67: 692–698

    Article  PubMed  CAS  Google Scholar 

  • Clunie M, Crone LA, Klassen L, Yip R (2003) Psychiatric side effects of indomethacin in parturients. Can J Anaesth 50: 586–588

    Article  PubMed  Google Scholar 

  • Collier DA, Li T (2003) The genetics of schizophrenia: glutamate not dopamine. Eur J Pharmacol 480: 177–184

    Article  PubMed  CAS  Google Scholar 

  • Cook GS, Hill AV (2001) Genetics of susceptibility to human infectious disease. Net Rev Genetics 2: 967–977

    Article  CAS  Google Scholar 

  • Cornblatt BI, Obuchowski M, Roberts S, Pollack S, Erlenmeyer-Kimling E (1999) Cognitive and behavioural precursors of schizophrenia. Dev Psychopathol 11: 487–508

    Article  PubMed  CAS  Google Scholar 

  • Das I, Khan NS (1998) Increased arachidonic acid induced platelet chemoluminiscence indicates cyclooxygenase overactivity in schizophrenic subjects. Prostaglandins Leukot Essent Fatty Acids 58: 165–168

    Article  PubMed  CAS  Google Scholar 

  • Dean K, Murray RM (2005) Environmental risk factors for psychosis. Dialogues in Clinical Neuroscience 7: 69–80

    PubMed  Google Scholar 

  • Erhardt S, Blennow K, Nordin C, Skogh E, Lindstrom LH, Engberg G (2001a) Kynureninurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci Lett 313: 6–8

    Article  Google Scholar 

  • Erhardt S, Oberg H, Mathe JM, Engberg G (2001b) Pharmacological elevation of endogenous Kynureninurenic acid levels activates nigral dopamine neurons. Amino Acids 20(4): 353–362

    Article  PubMed  CAS  Google Scholar 

  • Erhardt S, Engberg G (2002) Increased phasic activity of dopaminergic neurones in the rat ventral tegmental area following pharmacologically elevated levels of endogenous Kynureninurenic acid. Acta Physiol Scand 175: 45–53

    Article  PubMed  CAS  Google Scholar 

  • Erhardt S, Schwieler L, Engberg G (2003) Kynureninurenic acid and schizophrenia. Adv Exp Med Biol 527: 155–165

    PubMed  CAS  Google Scholar 

  • Espey MG, Chernyshev ON, Reinhard JJ, Namboodiri MA, Colton CA (1997) Activated human microglia produce the excitotoxin quinolinic acid. Neuroreport 8: 431–434

    PubMed  CAS  Google Scholar 

  • Farber NB, Wozniak DF, Price MT, Labruyere J, Huss J, St Peter H, Olney JW (1995) Agespecific neurotoxicity in the rat associated with NMDA receptor blockade: potential relevance to schizophrenia? Biol Psychiatry 38: 788–796

    Article  PubMed  CAS  Google Scholar 

  • Fearon P, Cotter P, Murray RM (2000) Is the association between obstretic complications and schizophrenia mediated by glutaminergic excitotoxic damage of the foetal/neonatal brain? In: Revely M, Deacon B (eds) Psychopharmacology of schizophrenia. Chapman and Hall, London, pp 21–40

    Google Scholar 

  • Frommberger UH, Bauer J, Haselbauer P, Fraulin A, Riemann D, Berger M (1997) Interleukin-6-(IL-6) plasma levels in depression and schizophrenia: comparison between the acute state and after remission. Eur Arch Psychiatry Clin Neurosci 247: 228–233

    PubMed  CAS  Google Scholar 

  • Furukawa H, del Rey A, Monge-Arditi G, Besedovsky HO (1998) Interleukin-1, but not stress, stimulates glucocorticoid output during early postnatal life in mice. Ann NY Acad Sci 840: 117–122

    Article  PubMed  CAS  Google Scholar 

  • Gal EM (1974) Cerebral tryptophan-2,3-dioxygenase (pyrrolase) and its induction in rat brain. J Neurochem 22: 861–863

    PubMed  CAS  Google Scholar 

  • Ganguli R, Yang Z, Shurin G, Chengappa R, Brar JS, Gubbi AV, Rabin BS (1994) Serum Interleukin-6 concentration in schizophrenia: elevation associated with duration of illness. Psychiatry Res 51: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Ganguli R, Brar JS, Chengappa KR, DeLeo M, Yang ZW, Shurin G, Rabin B (1995) Mitogen-stimulated interleukin 2 production in never-medicated, first episode schizophrenics — the influence of age of onset and negative symptoms. Arch Gen Psychiatry 52: 878

    Google Scholar 

  • Gattaz WF, Abrahao AL, Foccacia R (2004) Childhood meningitis, brain maturation and the risk of psychosis. Eur Arch Psychiatry Clin Neurosci 254: 9–13

    Article  Google Scholar 

  • Gholson RK, Hankes LV, Henderson LM (1960) 3-Hydroxyanthranilic acid as an intermediate in the oxidation of the indole nucleus of tryptophan. J Biol Chem 235: 132–135

    PubMed  CAS  Google Scholar 

  • Green MF, Nuechterlein KH (1999) Should schizophrenia be treated as a neurocognitive disorder? Schizophr Bull 25: 309–319

    PubMed  CAS  Google Scholar 

  • Grohmann U, Fallarino F, Puccetti P (2003) Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol 24: 242–248

    Article  PubMed  CAS  Google Scholar 

  • Großkopf A, Müller N, Malo A, Wank R (1998) Potential role for the narcolepsy-and multiple sclerosis-associated allele DQB1*0602 in schizophrenia subtypes. Schizophr Res 30: 187–189

    Article  PubMed  Google Scholar 

  • Grotta J (1994) Safety and tolerability of the glutamate receptor antagonist CGS 19755 in acute stroke patients. Stroke 25: 255

    Google Scholar 

  • Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, Croitoru J, Brew BJ (2003) Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neural Transm 110: 1–14

    Google Scholar 

  • Haber R, Bessette D, Hulihan-Giblin B, Durcan MJ, Goldman D (1993) Identification of tryptophan-2,3-dioxygenase RNA in rodent brain. Neurochem 60: 1159–1162

    CAS  Google Scholar 

  • Harris SG, Padilla J, Koumas L, Ray D, Phipps RP (2002) Prostaglandins as modulators of immunity. Trends Immunol 23: 144–150

    Article  PubMed  CAS  Google Scholar 

  • Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10: 40–68

    Article  PubMed  CAS  Google Scholar 

  • Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, Lichtenstein M (1999) Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatry 56: 29–36

    Article  PubMed  CAS  Google Scholar 

  • Heresco-Levy U (2003) Glutamatergic neurotransmission modulation and the mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 27: 1113–1123

    Article  PubMed  CAS  Google Scholar 

  • Herrling PL (1994) D-CPPene (SDZ EAA 494), a competitive NMDA receptor antagonist: results from animal models and first results in humans. Neuropsychopharmacol 10(3S): 591S

    Google Scholar 

  • Heyes MP, Achim CL, Wiley CA, Major EO, Saito K, Markey SP (1996) Human microglia convert L-tryptophan into the neurotoxin quinolinic acid. Biochem J 320: 595–597

    PubMed  CAS  Google Scholar 

  • Heyes MP, Chen CY, Major EO, Saito K (1997a) Different kynurenine pathway enzymes limit quinolinic acid formation by various human cell types. Biochem J 326: 351–356

    PubMed  CAS  Google Scholar 

  • Heyes M P, Saito K, Chen CY, Proescholdt MG, Nowak TS, Li J, Beagles KE, Proescholdt MA, Zito MA, Kawai K, Markey SP (1997b) Species heterogeneity between gerbils and rats: quinolinate production by microglia and astrocytes and accumulations in response to ischemic brain injury and systemic immune activation. J Neurochem 69: 1519–1529

    Article  PubMed  CAS  Google Scholar 

  • Hill AV (1999) Genetics of infectious disease resistance. Curr Opin Genet Dev 6: 348–353

    Article  Google Scholar 

  • Hilkens CM, Snijders A, Snijdewint FG, Wierenga EA, Kapsenberg ML (1996) Modulation of T-cell cytokine secretion by accessory cell-derived products. Eur Respir J [Suppl] 22: 90s–94s

    CAS  Google Scholar 

  • Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite Kynureninurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21: 7463–7473

    PubMed  CAS  Google Scholar 

  • Hinson RM, Williams JA, Shacter E (1996) Elevated interleukin 6 is induced by prostaglandin E2 in a murine model of inflammation: possible role of cyclooxygenase-2. Proc Natl Acad Sci USA 93: 4885–4890

    Article  PubMed  CAS  Google Scholar 

  • Hornberg M, Arolt V, Wilke I, Kruse A, Kirchner H (1995) Production of interferons and lymphokines in leukocyte cultures of patients with schizophrenia. Schizophr Res 15: 237–242

    Article  PubMed  CAS  Google Scholar 

  • Huber G (1983) Das Konzept substratnaher Basissymptome und seine Bedeutung für Theorie und Therapie schizophrener Erkrankungen. Nervenarzt 54: 23–32

    PubMed  CAS  Google Scholar 

  • Hynd MR, Scott HL, Dodd PR (2004) Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 45: 583–595

    Article  PubMed  CAS  Google Scholar 

  • Jentsch JD, Roth RH (1999) The neuropharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20: 201–224

    Article  PubMed  CAS  Google Scholar 

  • Kabiersch A, Furukawa H, del Rey A, Besedovsky HO (1998) Administration of interleukin-1 at birth affects dopaminergic neurons in adult mice. Ann NY Acad Sci 840: 123–127

    Article  PubMed  CAS  Google Scholar 

  • Kallmann FJ, Reisner D (1943) Twin studies on the genetic variation in resistance to tuberculosis. J Heredity 34

    Google Scholar 

  • Kaiya H, Uematsu M, Ofuji M, Nishida A, Takeuchi K, Nozaki M, Idaka E (1989) Elevated plasma prostaglandin E2 levels in schizophrenia. J Neural Transm 77: 39–46

    Article  PubMed  CAS  Google Scholar 

  • Kessler M, Terramani T, Lynch G, Baudry M (1989) A glycine site associated with Nmethyl-D-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem 52: 1319–1328

    PubMed  CAS  Google Scholar 

  • Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmuller B (1980) Low cerebrospinal fluid glutamate in schizophrenia patients and a new hypothesis of glutamatergic neuronal dysfunction. Neurosci Lett 20: 379–382

    Article  PubMed  CAS  Google Scholar 

  • Kiss C, Ceresoli-Borroni G, Guidetti P, Zielke CL, Zielke HR, Schwarcz R (2003) Kynureninurenate production by cultured human astrocytes. J Neural Transm 110: 1–14

    PubMed  CAS  Google Scholar 

  • Koponen H, Rantakallio P, Veijola J, Jones P, Jokelainen J, Isohanni M (2004) Childhood central nervous system infections and risk for schizophrenia. Eur Arch Psychiatry Clin Neurosci 254: 9–13

    Article  PubMed  Google Scholar 

  • Kornhuber J, Wiltfang J, Bleich S (2004) The etiopathogenesis of schizophrenia. Pharmacopsychiat 37[Suppl 2]: S103–S112

    Article  CAS  Google Scholar 

  • Kotake Y, Masayama T (1937) Über den Mechanismus der Kynureninurein-Bildung aus Tryptophan. Hoppe Seylers Z Physiol Chem 243: 237–244

    Google Scholar 

  • Körschenhausen D, Hampel H, Ackenheil M, Penning R, Müller N (1996) Fibrin degradation products in post mortem brain tissue of schizophrenics: a possible marker for underlying inflammatory processes. Schizophr Res 19: 103–109

    Article  PubMed  Google Scholar 

  • Kraepelin E (1899) Psychiatrie. Ein Lehrbuch für Studierende und Ärzte, Bd 6. Barth, Leipzig

    Google Scholar 

  • Kristensen JD, Svensson B, Gordh T (1992) The NMDA receptor antagonist CPP abolishes neurogenig „wind-up“ after intrathecal administration in humans. Pain 51: 249–253

    Article  PubMed  CAS  Google Scholar 

  • Krönig H, Riedel M, Schwarz MJ, Strassnig M, Möller HJ, Ackenheil M, Müller N (2005) ICAM G241A Polymorphism and soluble ICAM-1 serum levels — evidence for an active immune process in schizophrenia. Neuroimmunomodulation 12: 54–59

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP Delaney R, Bremner JD, Bowers MB Jr, Charney DS (1993) Dose related effects of the NMDA antagonist, ketamine, in healthy humans. Schizophr Res 9: 240–241

    Article  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51: 199–214

    PubMed  CAS  Google Scholar 

  • Kuhlman P, Moy VT, Lollo BA, Brian AA (1991) The accessory function of murine intercellular adhesion molecule-1 in T-lymphocyte activation: contribution of adhesion and co-activation. J Immunol 146: 1773–1782

    PubMed  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D’Souza CD, Erdos J, McCance E, Rosenblatt W, Fingado C, Zoghbi SS, Baldwin RM, Seibyl JP, Krystal JH, Charney DS, Innis RB (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA 93: 9235–9240

    Article  PubMed  CAS  Google Scholar 

  • Laumbacher B, Müller N, Bondy B, Schlesinger B, Gu S, Fellerhoff B, Wank R (2003) Significant frequency deviation of the class I polymorphism HLA-A10 in schizophrenic patients. J Med Genet 40: 217–219

    Article  PubMed  CAS  Google Scholar 

  • Leiderman E, Zylberman I, Zukin SR, Cooper TB, Javitt DC (1996) Preliminary investigation of high-dose oral glycine on serum levels and negative symptoms in schizophrenia: an open-label trial. Biol Psychiatry 39: 213–215

    Article  PubMed  CAS  Google Scholar 

  • Leweke FM, Gerth C W, Koethe D, Klosterkotter J, Ruslanova I, Krivogorsky B, Torrey E F and Yolken R H (2004) Antibodies to infectious agents in individuals with recent onset schizophrenia. Eur Arch Psychiatry Clin Neurosci 254: 4–8

    Article  PubMed  Google Scholar 

  • Lin A, Kenis G, Bignotti S, Tura GJB, De Jong R, Bosmans E, Pioli R, Altamura C, Scharpé S, Maes M (1998) The inflammatory response system in treatment-resistant schizophrenia: increased serum interleukin-6. Schizophr Res 32: 9–15

    Article  PubMed  CAS  Google Scholar 

  • Litherland SA, Xie XT, Hutson AD, Wasserfall C, Whitacker DS, She JX, Hofig A, Dennis MA, Fuller K, Cook R, Schatz D, Moldawer LL, Clare-Salzler MJ (1999) Aberrant prostaglandin synthase 2 expression defines an antigen-presenting cell defect for insulin-dependent diabetes mellitus. J Clin Invest 104: 515–523

    Article  PubMed  CAS  Google Scholar 

  • Lodge D, Aram JA, Church J, Davies SN, Martin D, O’Shoughnessy CT, Zeman S (1987) Excitatory amino acids and phencyclidine-like drugs. In: Hicks TP, Lodge D, McLennan H (eds) Excitatory amino acid transmission. Alan R Liss, New York, pp 83–90

    Google Scholar 

  • Maes M, Bosmans E, Calabrese J, Smith R, Meltzer HY (1995) Interleukin-2 and Interleukin-6 in schizophrenia and mania: effects of neuroleptics and mood-stabilizers. J Psychiatr Res 29: 141–152

    Article  PubMed  CAS  Google Scholar 

  • Maes M, Bosmans E, Kenis G, De Jong R, Smith RS, Meltzer HY (1997) In vivo immunomodulatory effects of clozapine in schizophrenia. Schizophr Res 26: 221–225

    Article  PubMed  CAS  Google Scholar 

  • Marshall BE, Longnecker DE (1990) General anesthetics. In: Goodman LS, Gilman A, Rall TW, Nies AS, Taylor P (eds) The pharmacological basis of therapeutics. Pergamon Press, Elmsford NY, pp 285–310

    Google Scholar 

  • Masu M, Tanabe Y, Tsuchida K, Shigemoto R, Nakanishi S (1991) Sequence and expression of a metabotropic glutamate receptor. Nature 349: 760–765

    Article  PubMed  CAS  Google Scholar 

  • McNeil TF, Cantor-Graae E, Weinberger DR (2000) Relationship of abstretic complications and differences in size of brain structures in monozygotic twin pairs discordant for schizophrenia. Am J Psychiatry 157: 203–212

    Article  PubMed  CAS  Google Scholar 

  • Mednick SA, Machon RA, Huttunen MO, Bonett D (1988) Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry 45: 817–824

    Google Scholar 

  • Meira-Lima IV, Pereira AC, Mota GF, Floriano M, Araujo F, Mansur AJ, Krieger JE, Vallada H. (2003) Analysis of a polymorphism in the promoter region of the tumor necrosis factor alpha gene in schizophrenia and bipolar disorder: further support for an association with schizophrenia. Mol Psychiatry 8: 718–720

    Article  PubMed  CAS  Google Scholar 

  • Miller CL, Llenos IC, Dulay JR, Barillo MM, Yolken RH, Weis S (2004) Expression of the Kynurenine pathway enzyme tryptophane 2,3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia. Neurobiol Dis 15: 618–629

    Article  PubMed  CAS  Google Scholar 

  • Miller DW, Abercrombie ED (1996) Effects of MK-801 on spontaneous and amphetamine-stimulated dopamine release in striatum measured with in vivo microdialysis in awake rats. Brain Res Bull 40: 57–62

    Article  PubMed  CAS  Google Scholar 

  • Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) Macrophages and the Th1/Th2 paradigm. J Immunol 164: 6166–6173

    PubMed  CAS  Google Scholar 

  • Mittleman BB, Castellanos FX, Jacobson LK, Rapoport JL, Swedo SE, Shearer GM (1997) Cerebrospinal fluid cytokines in pediatric neuropsychiatric disease. J Immunol 159: 2994–2999

    PubMed  CAS  Google Scholar 

  • Molholm HB (1942) Hyposensitivity to foreign protein in schizophrenic patients. Psychiatr Quaterly 16: 565–571

    Article  Google Scholar 

  • Möller HJ (2004) Course and long-term treatment of schizophrenic psychoses. Pharmacopsychiatry 37[Suppl 2]: S125–S135

    Google Scholar 

  • Müller N, Ackenheil M (1998) Psychoneuroimmunology, the cytokine network in the CNS, and the implications for psychiatric disorders. Progr Neuropsychopharmacol Biol Psychiatry 22: 1–31

    Article  Google Scholar 

  • Müller N, Schwarz MJ (2003) Role of the cytokine network in major psychoses. In: Hertz L (ed) Non-neuronal cells of the nervous system: function and dysfunction. Elsevier, Amsterdam, pp 999–1031

    Google Scholar 

  • Müller N, Ackenheil M, Hofschuster E, Mempel W, Eckstein R (1991) Cellular immunity in schizophrenic patients before and during neuroleptic therapy. Psychiatry Res 37: 147–160

    Article  PubMed  Google Scholar 

  • Müller N, Empel M, Riedel M, Schwarz MJ, Ackenheil M (1997a) Neuroleptic treatment increases soluble IL-2 receptors and decreases soluble IL-6 receptors in schizophrenia. Eur Arch Psychiatry Clin Neurosci 247: 308–313

    Article  PubMed  Google Scholar 

  • Müller N, Dobmeier P, Empel M, Riedel M, Schwarz M, Ackenheil M (1997b) Soluble IL-6 Receptors in the serum and cerebrospinal fluid of paranoid schizophrenic patients. Eur Psychiatry 12: 294–299

    Article  PubMed  Google Scholar 

  • Müller N, Riedel M, Schwarz M, Gruber R, Ackenheil M (1997c) Immunomodulatory effects of neuroleptics to the cytokine system and the cellular immune system in schizophrenia. In: Wieselmann G (ed) Current update in psychoimmunology. Springer, Wien New York, pp 57–67

    Google Scholar 

  • Müller N, Schlesinger BC, Hadjamu M, Riedel M, Schwarz MJ, Primbs J, Ackenheil M, Wank R, Gruber R (1998) Cytotoxic gamma/delta cells (g/d+CD8+) are elevated in unmedicated schizophrenic patients and related to the blood-brain barrier and the HLA allele DPA 02011. Schizophr Res 12: 69–71

    Article  Google Scholar 

  • Müller N, Hadjamu M, Riedel M, Primbs J, Ackenheil M, Gruber R (1999) The adhesion-molecule receptor expression on T helper cells increases during treatment with neuroleptics and is related to the blood-brain barrier permeability in schizophrenia. Am J Psychiatry 156: 634–636

    PubMed  Google Scholar 

  • Müller N, Riedel M, Ackenheil M, Schwarz MJ (2000) Cellular and humoral immune system in schizophrenia: a conceptual re-evaluation. World J Biol Psychiatry 1: 173–179

    Article  PubMed  Google Scholar 

  • Müller N, Riedel M, Scheppach C, Brandstätter B, Sokkullu S, Krampe K, Ulmschneider M, Möller H-J, Schwarz M (2002) Beneficial anti-psychotic effects of celecoxib add-on therapy compared to risperidone alone in schizophrenia. Am J Psychiatry 159: 1029–1034

    Article  PubMed  Google Scholar 

  • Müller N (2004a) Immunological and infectious aspects of schizophrenia (Editorial). Eur Arch Psychiatry Clin Neurosci 254: 1–3

    Article  PubMed  Google Scholar 

  • Müller N, Ulmschneider M, Scheppach C, Schwarz MJ, Ackenheil M, Möller H-J, Gruber R, Riedel M (2004b) COX-2 inhibition as a treatment approach in schizophrenia: immunological considerations and clinical effects of celecoxib add-on therapy. Eur Arch Psychiatry Clin Neurosci 254: 14–22

    Article  PubMed  Google Scholar 

  • Müller N, Riedel M, Schwarz MJ (2004c) Psychotropic effects of COX-2 inhibitors — a possible new approach for the treatment of psychiatric disorders. Pharmacopsychiat 37: 266–269

    Article  CAS  Google Scholar 

  • Müller N, Riedel M, Schwarz MJ, Engel RR (2005) Clinical effects of COX-2 inhibitors on cognition in schizophrenia. Eur Arch Psychiatry Clin Neurosci 255: 149–151

    Article  PubMed  Google Scholar 

  • Murray RM, Lewis SW (1987) Is schizophrenia a neurodevelopmental disorder? BMJ 295: 681–682

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi S (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258: 597–603

    PubMed  CAS  Google Scholar 

  • Neidhart M, Pataki F, Fehr K (1995) Increased soluble endothelial adhesion molecules in rheumatoid arthritis correlate with circulating cytokines and depletion of CD45R0+ Tlymphocytes from blood stream. Schweiz Med Wochenschr 125: 424–428

    PubMed  CAS  Google Scholar 

  • Nilsson LK, Schwieler L, Engberg G, Linderholm KR, Erhardt S (2005) Activation of noradrenergic locus coeruleus neurons by clozapine and haloperidol: involvement of glutamatergic mechanisms. Int J Neuropsychopharmacol Mar 1: 1–11 [Epub ahead of print]

    Google Scholar 

  • Numakawa T, Yagasaki Y, Ishimoto T, Okada T, Suzuki T, Iwata N, Ozaki N, Taguchi T, Tatsumi M, Kamijima K, Straub RE, Weinberger DR, Kunugi H, Hashimoto R (2004) Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Hum Mol Genet 13: 2699–2708

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52: 998–1007

    PubMed  CAS  Google Scholar 

  • Özek M, Töreci K, Akkök I, Güvener Z (1971) The influence of treatment with neuroleptics upon the antibody-formation. Psychopharmacologia 21: 401–412

    Article  PubMed  Google Scholar 

  • Paludan SR (1998) Interleukin-4 and interferon-gamma: the quintessence of a mutual antagonistic relationship. Scand J Immunol 48: 459–468

    Article  PubMed  CAS  Google Scholar 

  • Pearce BD (2001) Schizophrenia and viral infection during neurodevelopment: a focus on mechanisms. Mol Psychiatry 6: 634–646

    Article  PubMed  CAS  Google Scholar 

  • Pollmächer T, Hinze-Selch D, Mullington J (1996) Effects of clozapine on plasma cytokine and soluble cytokine receptor levels. J Clin Pharmacol 16: 403–409

    Google Scholar 

  • Pyeon D, Diaz FJ, Splitter GA (2000) Prostaglandin E(2) increases bovine leukemia virus tax and pol mRNA levels via cyclooxygenase 2: regulation by interleukin-2, interleukin-10, and bovine leukemia virus. J Virol 74: 5740–5745

    Article  PubMed  CAS  Google Scholar 

  • Ramchand R, Wei J, Ramchand CN, Hemmings GP (1994) Increased serum IgE in schizophrenic patients who responded poorly to neuroleptic treatment. Life Sci 54: 1579–1584

    Article  PubMed  CAS  Google Scholar 

  • Rantakallio P, Jones P, Moring J, von Wendt L (1997) Association between central nervous system infections during childhood and adult onset schizophrenia and other psychoses: a 28-year follow-up. Int J Epidemiol 26: 837–843

    Article  PubMed  CAS  Google Scholar 

  • Riedel M, Krönig H, Schwarz MJ, Engel RR, Kühn KU, Sikorski Ch, Sokullu S, Ackenheil M, Möller HJ, Müller N (2002) No association between the G308A polymorphism of the tumor necrosis factor-alpha gene and schizophrenia. Eur Arch Psychiatry Clin Psychiat 252: 232–234

    Google Scholar 

  • Riedel M, Strassnig M, Spellmann I, Sikorski Ch, Schwarz MJ, Möller HJ, Müller N (2005) Decreased cellular immune response in schizophrenic patients. J Psychiatr Res (in press)

    Google Scholar 

  • Romagnani S (1995) Biology of human TH1 and TH2 cells. J Clin Immunol 15: 121–129

    Article  PubMed  CAS  Google Scholar 

  • Rothermundt M, Arolt V, Peters M, Gutbrodt H, Fenker J, Kersting A, Kirchner H (2001b) Inflammatory markers in major depression and melancholia. J Affect Dis 63: 93–102

    Article  PubMed  CAS  Google Scholar 

  • Rothermundt M, Ponath G, Arolt V (2004a) S100B in schizophrenic psychosis. Int Rev Neurobiol 59: 445–470

    Article  PubMed  CAS  Google Scholar 

  • Rothermundt M, Falkai P, Ponath G, Abel S, Bürkle H, Diedrich M, Hetzel G, Peters M, Siegmund A, Pedersen A, Maier W, Schramm J, Suslow T, Ohrmann P, Arolt V (2004b) Glial cell dysfunction in schizophrenia indicated by increased S100B in the CSF. Mol Psychiatry 9: 897–899

    Article  PubMed  CAS  Google Scholar 

  • Rothermundt M, Ponath G, Glaser T, Hetzel G, Arolt V (2004c) S100B serum levels and long-term improvement of negative symptoms in patients with schizophrenia. Neuropsychopharmacol 29: 1004–1011

    Article  CAS  Google Scholar 

  • Schwab SG, Albus M, Hallmayer J, Honig S, Borrmann M, Lichtermann D, Ebstein RP, Ackenheil M, Lerer B, Risch N (1995) Evaluation of a susceptibility gene for schizophrenia on chromosome 6p by multipoint affected sib-pair linkage analysis. Nat Genet 11: 325–327

    Article  PubMed  CAS  Google Scholar 

  • Schwab SG, Hallmayer J, Albus M, Lerer B, Eckstein GN, Borrmann M, Segman RH, Hanses C, Freymann J, Yakir A, Trixler M, Falkai P, Rietschel M, Maier W, Wildenauer DB (2000) A genome-wide autosomal screen for schizophrenia susceptibility loci in 71 families with affected siblings: support for loci on chromosome 10p and 6. Mol Psychiatry 5: 638–649

    Article  PubMed  CAS  Google Scholar 

  • Schwab SG, Knapp M, Mondabon S, Hallmayer J, Borrmann-Hassenbach M, Albus M, Lerer B, Rietschel M, Trixler M, Maier W, Wildenauer DB (2003) Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. Am J Hum Genet 72: 185–190

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz R, Rassoulpour A, Wu HQ, Medoff D, Tamminga CA, Roberts RC (2001) Increased cortical kynureninurenate content in schizophrenia. Biol Psychiatry 50: 521–530

    Article  PubMed  CAS  Google Scholar 

  • Schwarz MJ, Riedel M, Ackenheil M, Müller N (2000) Deceased levels of soluble intercellular adhesion molecule-1 (sICAM-1) in unmedicated and medicated schizophrenic patients. Biol Psychiatry 47: 29–33

    Article  PubMed  CAS  Google Scholar 

  • Schwarz MJ, Chiang S, Müller N, Ackenheil M (2001) T-Helper-1 and T-Helper-2 responses in psychiatric disorders. Brain Behav Immun 15: 340–370

    Article  PubMed  CAS  Google Scholar 

  • Schwarz MJ, Krönig H, Riedel M, Dehning S, Douhet A, Spellmann I, Ackenheil M, Möller HJ, Müller N (2005) IL-2 and IL-4 polymorphisms as candidate genes in schizophrenia. Eur Arch Psychiatry Clin Neurosci (in press)

    Google Scholar 

  • Schwieler L, Engberg G, Erhardt S (2004a) Clozapine modulates midbrain dopamine neuron firing via interaction with the NMDA receptor complex. Synapse 52:114–122

    Article  PubMed  CAS  Google Scholar 

  • Schwieler L, Erhardt S, Erhardt C, Engberg G (2005) Prostaglandin-mediated control of rat brain kynureninurenic acid synthesis — opposite actions by COX-1 and COX-2 isoforms. J Neural Transm 112: 863–872

    Article  PubMed  CAS  Google Scholar 

  • Seder RA, Paul W E (1994) Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu Rev Immunol 12: 635–673

    Article  PubMed  CAS  Google Scholar 

  • Speciale C, Schwarcz R (1993) On the production and disposition of quinolinic acid in rat brain and liver slices. J Neurochem 60: 212–218

    PubMed  CAS  Google Scholar 

  • Speciale C, Wu HQ, Cini M, Marconi M, Varasi M, Schwarcz R (1996) (R,S)-3,4-dichlorobenzoylalanine (FCE 28833A) causes a large and persistent increase in brain Kynureninurenic acid levels in rats. Eur J Pharmacol 315: 263–267

    Article  PubMed  CAS  Google Scholar 

  • Sperner-Unterweger B, Miller C, Holzner B, Widner B, Fleischhacker WW, Fuchs D (1999) Measurement of neopterin, kynurenine and tryptophan in sera of schizophrenic patients. In: Müller N (ed) Psychiatry, psychimmunology, and viruses. Springer, Wien New York, pp 115–119

    Google Scholar 

  • Stalder AK, Pagenstecher A, Yu NC, Kincaid C, Chiang CS, Hobbs MV, Bloom FE, Campbell IL (1997) Lipopolysaccharide-induced IL-12 expression in the central nervous system and cultured astrocytes and microglia. J Immunol 159: 1344–1351

    PubMed  CAS  Google Scholar 

  • Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, Brynjolfsson J, Gunnarsdottir S, Ivarsson O, Chou TT, Hjaltason O, Birgisdottir B, Jonsson H, Gudnadottir VG, Gudmundsdottir E, Bjornsson A, Ingvarsson B, Ingason A, Sigfusson S, Hardardottir H, Harvey RP, Lai D, Zhou M, Brunner D, Mutel V, Gonzalo A, Lemke G, Sainz J, Johannesson G, Andresson T, Gudbjartsson D, Manolescu A, Frigge ML, Gurney ME, Kong A, Gulcher JR, Petursson H, Stefansson K (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71: 877–892

    Article  PubMed  Google Scholar 

  • Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnsson E, Gunnarsdottir S, Walker N, Petursson H, Crombie C, Ingason A, Gulcher JR, Stefansson K, St Clair D (2003) Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet 72: 83–87

    Article  PubMed  CAS  Google Scholar 

  • Stolina M, Sharma S, Lin Y, Dohadwala M, Gardner B, Luo J, Zhu L, Kronenberg M, Miller PW, Portanova J, Lee JC, Dubinett SM (2000) Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J Immunol 164: 361–370

    PubMed  CAS  Google Scholar 

  • Stone TW (1993) Neuropharmacology of quinolinic and kynurenine acids. Pharmacol Rev 43: 309–379

    Google Scholar 

  • Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV, Harris-Kerr C, Wormley B, Sadek H, Kadambi B, Cesare AJ, Gibberman A, Wang X, O’Neill FA, Walsh D, Kendler KS (2002) Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 71: 337–348

    Article  PubMed  CAS  Google Scholar 

  • Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60: 1187–1192

    Article  PubMed  Google Scholar 

  • Sumiyoshi T, Anil AE, Jin D, Jayathilake K, Lee M, Meltzer HY (2004) Plasma glycine and serine levels in schizophrenia compared to normal controls and major depression: relation to negative symptoms. Int J Neuropsychopharmacol 7:1–8

    Article  PubMed  CAS  Google Scholar 

  • Sumiyoshi T, Jin D, Jayathilake K, Lee M, Meltzer HJ (2005) Prediction of the ability of clozapine to treat negative symptoms from plasma glycine and serine levels in schizophrenia. Int J Neuropsychopharmacol 8: 1–5

    Article  CAS  Google Scholar 

  • Suvisaari J, Haukka J, Transkanen A, Hovi T, Lonnquist J (1999) Association between prenatal exposure to poliovirus infection and adult schizophrenia. Am J Psychiatry 156: 1100–1102

    PubMed  CAS  Google Scholar 

  • Takai N, Mortensen PB, Klaening U, Murray RM, Sham PC, O’Callaghan E, Munk-Jorgensen P (1996) Relationship between in utero exposure to influenza epidemics and risk of schizophrenia in Denmark. Biol Psychiatry 40: 817–824

    Article  Google Scholar 

  • Takikawa O, Yoshida R, Kido R, Hayaishi O (1986) Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase. J Biol Chem 261: 347–351

    Google Scholar 

  • Talbot K, Eidem WL, Tinsley CL, Benson MA, Thompson EW, Smith RJ, Hahn CG, Siegel SJ, Trojanowski JQ, Gur RE, Blake DJ, Arnold SE (2004) Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest 113: 1353–1363

    Article  PubMed  CAS  Google Scholar 

  • Tanaka KF, Shintani F, Fujii Y, Yagi G, Asai M (2000) Serum interleukin-18 levels are elevated in schizophrenia. Psychiatry Res 96: 75–80

    Article  PubMed  CAS  Google Scholar 

  • Tamminga CA, Cascella N, Fakouhl TD, Hertin RL (1992) Enhancement of NMDA-mediated transmission in schizophrenia: effects of milacemide. In: Meltzer HY (ed) Novel antipsychotic drugs. Raven Press, New York, pp 171–177

    Google Scholar 

  • Tharumaratnam D, Bashford S, Khan SA (2000) Indomethacin induced psychosis. Postgrad Med J 76: 736–737

    Article  PubMed  CAS  Google Scholar 

  • Tohmi M, Tsuda N, Watanabe Y, Kakita A, Nawa H (2004) Perinatal inflammatory cytokine challenge results in distinct neurobehavioral alterations in rats: implication in psychiatric disorders of developmental origin. Neurosci Res 50: 67–75

    Article  PubMed  CAS  Google Scholar 

  • Torrey EF, Miller J, Rawlings R, Yolken RH (1997) Seasonality of births in schizophrenia and bipolar disorder: a review of the literature. Schizophr Res 28: 1–38

    Article  PubMed  CAS  Google Scholar 

  • Tsai G, Yang P, Chung LC, Lange N, Coyle JT (1998) D-serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 44: 1081–1089

    Article  PubMed  CAS  Google Scholar 

  • Van Kammen DP, McAllister-Sistilli CG, Kelley ME (1997) Relationship between immune and behavioral measures in schizophrenia. In: Wieselmann G (ed) Current update in psychoimmunology. Springer, Wien New York, pp 51–55

    Google Scholar 

  • Villemain F, Chatenoud L, Galinowski A, Homo-Delarche F, Genestet D, Loo H, Zarifarain E, Bach JF (1989) Aberrant T-cell-mediated immunity in untreated schizophrenic patients: deficient Interleukin-2 production. Am J Psychiatry 146: 609–616

    PubMed  CAS  Google Scholar 

  • Vinogradov S, Gottesman II, Moises HW, Nicol S (1991) Negative association between schizophrenia and rheumatoid arthritis. Schizophr Bull 17: 669–678

    PubMed  CAS  Google Scholar 

  • Weickert TW, Goldberg TE (2000) The course of cognitive impairment in patients with schizophrenia. In: Sharma T, Harvey P (eds) Cognition in schizophrenia: impairments, importance and treatment strategies. Oxford University Press, Oxford NY, pp 3–15

    Google Scholar 

  • Westergaard T, Mortensen PB, Pedersen CB, Wohlfahrt J, Melbye M (1999) Exposure to prenatal and childhood infections and the risk of schizophrenia: suggestions from a study of sibship characteristics and influenca prevalence. Arch Gen Psychiatry 56: 993–998

    Article  PubMed  CAS  Google Scholar 

  • Wilke I, Arolt V, Rothermundt M, Weitzsch Ch, Hornberg M, Kirchner H (1996) Investigations of cytokine production in whole blood cultures of paranoid and residual schizophrenic patients. Eur Arch Psychiatry Clin Neurosci 246: 279–284

    Article  PubMed  CAS  Google Scholar 

  • Williams NM, Preece A, Spurlock G, Norton N, Williams HJ, Zammit S, O’Donovan MC, Owen MJ (2003) Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. Mol Psychiatry 8: 485–487

    Article  PubMed  CAS  Google Scholar 

  • Wu HQ, Lee SC, Scharfmann HE, Schwarcz R (2002) L-4-chlorokynurenine attenuates kainate-induced seizures and lesions in the rat. Exp Neurol 177: 222–232

    Article  PubMed  CAS  Google Scholar 

  • Xiao BG, Link H (1999) Is there a balance between microglia and astrocytes in regulating Th1/Th2-cell responses and neuropathologies? Immunology Today 20: 477–479

    Article  PubMed  CAS  Google Scholar 

  • Yolken RH, Torrey EF (1995) Viruses, schizophrenia, and bipolar disorder. Clin Microbiol Rev 8: 131–145

    PubMed  CAS  Google Scholar 

  • Zimmer DB, Cornwall EH, Landar A, Song W (1995) The S100 protein family: history, function, and expression. Brain Res Bull 37: 417–429

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag/Wien

About this paper

Cite this paper

Müller, N., Schwarz, M.J. (2006). Schizophrenie, Entzündung und glutamaterge Neurotransmission: ein pathophysiologisches Modell. In: Möller, HJ., Müller, N. (eds) Aktuelle Aspekte der Pathogenese und Therapie der Schizophrenie. Springer, Vienna. https://doi.org/10.1007/3-211-29109-1_8

Download citation

  • DOI: https://doi.org/10.1007/3-211-29109-1_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-29043-9

  • Online ISBN: 978-3-211-29109-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics