Skip to main content
  • 1061 Accesses

Schlussfolgerung

Die molekulargenetische Erforschung der Schizophrenie hat mit der Entdeckung der ersten Dispositionsgene für Schizophrenie erste Durchbrüche erreicht. Die Bedeutung dieser Erfolge kann nicht unterschätzt werden.

Die zweistufige Strategie zur Genortsuche bei komplexen Erkrankungen (zuerst genomweite Kopplungsanalysen, anschließend Analyse des Kopplungsungleichgewichts) hat sich — anfänglicher skeptischer Einschätzung zum Trotz — als erfolgreich erwiesen. Für diese Aussage gibt es auch weitere Beispiele aus der inneren Medizin (z.B. Colitis ulcerosa, Diabetes mellitus). Aufgrund dieser Einschätzung sind weitere Genortidentifikationen auch bei der Schizophrenie zu erwarten.

Die gefundenen Dispositionsgene und ihre Produkte sind bisher nie im Kontext der Schizophrenie diskutiert worden und weisen auf pathogenetische Mechanismen hin, die bisher unbekannt waren. Somit erweist sich die systematische Genortsuche als eine unerwartet effiziente Suchstrategie nach molekularbiologischen Entstehungsmechanismen von Krankheiten. Diese wiederum können langfristig helfen, gezielt Substanzen zu entwickeln, die in die Pathogenese eingreifen und damit als kausale Therapeutika mit neuen, bisher unbekannten Wirkmechanismen fungieren können. Diese Chancen sind vor allem bei bislang nur unzureichend behandelbaren Erkrankungen — wie der Schizophrenie mit meist überdauernden Defiziten — besonders vielversprechend.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Cannon TD, van Erp TG, Rosso IM, Huttunen M, Lonnqvist J, Pirkola T, Salonen O, et al (2002) Fetal hypoxia and structural brain abnormalities in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry 59: 35–41

    Article  PubMed  Google Scholar 

  • Corfas G, Roy K, Buxbaum JD (2004) Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nat Neurosci 7: 575–580

    Article  PubMed  CAS  Google Scholar 

  • Corvin AP, Morris DW, McGhee K, Schwaiger S, Scully P, Quinn J, Meagher D, et al (2004) Confirmation and refinement of an ‘at-risk’ haplotype for schizophrenia suggests the EST cluster, Hs.97362, as a potential susceptibility gene at the Neuregulin-1 locus. Mol Psychiatry 9: 208–213

    Article  PubMed  CAS  Google Scholar 

  • Daiger SP (2005) Was the Human Genome Project worth the effort? Science 308: 362–364

    Article  PubMed  CAS  Google Scholar 

  • Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA (2004) Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet 36: 131–137

    Article  PubMed  CAS  Google Scholar 

  • Erlenmeyer-Kimling L, Cornblatt B (1987) The New York High-Risk Project: a follow-up report. Schizophr Bull 13: 451–461

    PubMed  CAS  Google Scholar 

  • Fan JB, Zhang CS, Gu NF, Li XW, Sun WW, Wang HY, Feng GY, et al (2005) Catechol-Omethyltransferase gene Val/Met functional polymorphism and risk of schizophrenia: a large-scale association study plus meta-analysis. Biol Psychiatry 57: 139–144

    Article  PubMed  CAS  Google Scholar 

  • Funke B, Finn CT, Plocik AM, Lake S, DeRosse P, Kane JM, Kucherlapati R, et al (2004) Association of the DTNBP1 locus with schizophrenia in a U.S. population. Am J Hum Genet 75: 891–898

    Article  PubMed  CAS  Google Scholar 

  • Hallmayer J (2004) Getting our AKT together in schizophrenia? Nat Genet 36:115–116

    Article  PubMed  CAS  Google Scholar 

  • Harrison PJ, Owen MJ (2003) Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 361: 417–419

    Article  PubMed  CAS  Google Scholar 

  • Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10: 40–68

    Article  PubMed  CAS  Google Scholar 

  • Heston LL (1966) Psychiatric disorders in foster home reared children of schizophrenic mothers. Br J Psychiatry 112: 819–825

    Article  PubMed  CAS  Google Scholar 

  • Kallmann FJ (1946) The genetic theory of schizophrenia. An analysis of 691 schizophrenic twins index families. Am J Psychiatry 103: 309–322

    Google Scholar 

  • Kirov G, Ivanov D, Williams NM, Preece A, Nikolov I, Milev R, Koleva S, et al (2004) Strong evidence for association between the dystrobrevin binding protein 1 gene (DTNBP1) and schizophrenia in 488 parent-offspring trios from Bulgaria. Biol Psychiatry 55: 971–975

    Article  PubMed  CAS  Google Scholar 

  • Lewis MC, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I, Williams NM, et al (2003) Genome scan meta-analysis of schizophrenia and bipolar disorder, part II. Schizophrenia. Am J Hum Genet 73: 34–48

    Article  PubMed  CAS  Google Scholar 

  • Li T, Stefansson H, Gudfinnsson E, Cai G, Liu X, Murray RM, Steinthorsdottir V, et al (2004) Identification of a novel neuregulin 1 at-risk haplotype in Han schizophrenia Chinese patients, but no association with the Icelandic/Scottish risk haplotype. Mol Psychiatry 9: 698–704

    PubMed  CAS  Google Scholar 

  • Luxenburger H (1928) Vorläufiger Bericht der psychiatrischen Serienuntersuchungen an Zwillingen. Z Ges Neurol Psychiat 116: 297–326

    Article  Google Scholar 

  • Numakawa T, Yagasaki Y, Ishimoto T, Okada T, Suzuki T, Iwata N, Ozaki N, et al (2004) Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Hum Mol Genet 13: 2699–2708

    Article  PubMed  CAS  Google Scholar 

  • Owen MJ, Williams NM, O’Donovan MC (2004) Dysbindin-1 and schizophrenia: from genetics to neuropathology. J Clin Invest 113: 1255–1257

    Article  PubMed  CAS  Google Scholar 

  • Rietschel M, Illes F (Hrsg) (2005) Patentierung von Genen — Molekulargenetische Forschung in der ethischen Kontroverse. Dr. Kovac-Verlag, Hamburg

    Google Scholar 

  • Risch NJ (2000) Searching for genetic determinants in the new millennium. Nature 405: 847–856

    Article  PubMed  CAS  Google Scholar 

  • Rüdin E (1916) Studien über Vererbung und Entstehung geistiger Störungen. I. Zur Vererbung und Neuentstehung der Dementia praecox. Springer, Berlin

    Google Scholar 

  • Schumacher J, Jamra RA, Freudenberg J, Becker T, Ohlraun S, Otte AC, Tullius M, et al (2004) Examination of G72 and D-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Mol Psychiatry 9: 203–207

    Article  PubMed  CAS  Google Scholar 

  • Schwab SG, Knapp M, Mondabon S, Hallmayer J, Borrmann-Hassenbach M, Albus M, Lerer B, et al (2003) Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. Am J Hum Genet 72: 185–190

    Article  PubMed  CAS  Google Scholar 

  • Schwab SG, Hoefgen B, Hanses C, Borrmann-Hassenbach M, Albus M, Lerer B, Trixler M, et al (2005) Further evidence for association of variants in the AKT1 gene with schizophrenia in a sample of European sib-pair families. Biol Psychiatry 58: 446–450

    Article  PubMed  CAS  Google Scholar 

  • Segurado R, Detera-Wadleigh SD, Levinson DF, Lewis CM, Gill M, Nurnberger JI jr, Craddock N, et al (2003) Genome scan meta-analysis of schizophrenia and bipolar disorder, part III. Bipolar disorder. Am J Hum Genet 73: 49–62

    Article  PubMed  CAS  Google Scholar 

  • Slater E (1953) Genetic investigations in twins. J Ment Sci 99: 44–52

    PubMed  CAS  Google Scholar 

  • Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, Brynjolfsson J, et al (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71: 877–892

    Article  PubMed  Google Scholar 

  • Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnsson E, Gunnarsdottir S, et al (2003) Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet 72: 83–87

    Article  PubMed  CAS  Google Scholar 

  • Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV, Harris-Kerr C, et al (2002) Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 71: 337–348

    Article  PubMed  CAS  Google Scholar 

  • Talbot K, Eidem WL, Tinsley CL, Benson MA, Thompson EW, Smith RJ, Hahn C-G, et al (2004) Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest 113: 1353–1363

    Article  PubMed  CAS  Google Scholar 

  • Tang JX, Zhou J, Fan JB, Li XW, Shi YY, Gu NF, Feng GY, et al (2003) Family-based association study of DTNBP1 in 6p22.3 and schizophrenia. Mol Psychiatry 8: 717–718

    Article  PubMed  CAS  Google Scholar 

  • Tang JX, Chen WY, He G, Zhou J, Gu NF, Feng GY, He L (2004) Polymorphisms within 5’ end of the Neuregulin 1 gene are genetically associated with schizophrenia in the Chinese population. Mol Psychiatry 9: 11–12

    Article  PubMed  CAS  Google Scholar 

  • Thiselton DL, Webb BT, Neale BM, Ribble RC, O’Neill FA, Walsh D, Riley BP, et al (2004) No evidence for linkage or association of neuregulin-1 (NRG1) with disease in the Irish study of high-density schizophrenia families (ISHDSF). Mol Psychiatry 9: 777–783

    Article  PubMed  CAS  Google Scholar 

  • Van den Bogaert A, Schumacher J, Schulze TG, Otte AC, Ohlraun S, Kovalenko S, Becker T, et al (2003) The DTNBP1 (dysbindin) gene contributes to schizophrenia, depending on family history of the disease. Am J Hum Genet 73: 1438–1443

    Article  Google Scholar 

  • Weickert CS, Straub RE, McClintock BW, Matsumoto M, Hashimoto R, Hyde TM, Herman MM, et al (2004) Human dysbindin (DTNBP1) gene expression in normal brain and in schizophrenic prefrontal cortex and midbrain. Arch Gen Psychiatry 61: 544–555

    Article  PubMed  CAS  Google Scholar 

  • Williams NM, Preece A, Spurlock G, Norton N, Williams HJ, Zammit S, O’Donovan MC, et al (2003) Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. Mol Psychiatry 8: 485–487

    Article  PubMed  CAS  Google Scholar 

  • Williams NM, Preece A, Morris DW, Spurlock G, Bray NJ, Stephens M, Norton N, et al (2004) Identification in 2 independent samples of a novel schizophrenia risk haplotype of the dystrobrevin binding protein gene (DTNBP1). Arch Gen Psychiatry 61: 336–344

    Article  PubMed  CAS  Google Scholar 

  • Wong AH, Gottesman II, Petronis A (2005) Phenotypic differences in genetically identical organisms: the epigenetic perspective. Hum Mol Genet 14, Spec No 1: R11–R18

    Article  PubMed  CAS  Google Scholar 

  • Yang JZ, Si TM, Ruan Y, Ling YS, Han YH, Wang XL, Zhou M, et al (2003) Association study of neuregulin 1 gene with schizophrenia. Mol Psychiatry 8: 706–709

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Shi Y, Tang J, Tang R, Yu L, Gu N, Feng G, et al (2004) A case control and family based association study of the neuregulin1 gene and schizophrenia. J Med Genet 41: 31–34

    Article  PubMed  CAS  Google Scholar 

  • Zobel A, Maier W (2004) Endophänotypen — ein neues Konzept zur biologischen Charakterisierung psychischer Störungen. Nervenarzt 75: 205–214

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Maier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag/Wien

About this paper

Cite this paper

Maier, W. (2006). Aktuelle Aspekte genetischer Forschung bei Schizophrenie. In: Möller, HJ., Müller, N. (eds) Aktuelle Aspekte der Pathogenese und Therapie der Schizophrenie. Springer, Vienna. https://doi.org/10.1007/3-211-29109-1_6

Download citation

  • DOI: https://doi.org/10.1007/3-211-29109-1_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-29043-9

  • Online ISBN: 978-3-211-29109-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics