Skip to main content

Moving Grain Boundaries During Hot Deformation of Metals: Dynamic Recrystallization

  • Chapter
Moving Interfaces in Crystalline Solids

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 453))

Abstract

Basic knowledge regarding kinematics and dynamics of grain boundaries in metals is first reviewed. Typical effects of grain boundary migration during hot deformation, i.e. flow stress softening and grain coarsening, are illustrated by a simple one-dimensional model. The two mechanisms of continuous and discontinuous dynamic recrystallization are then introduced and compared from recent experimental data. Semi-analytical models involving mainly strain hardening, dynamic recovery, low and high angle boundary generation and migration are proposed. Finally, possible transitions between the two varieties of dynamic recrystallization are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bayle, B., Bocher, Ph., Jonas, J.J., and Montheillet, F. (1999). Flow stress and recrystallization during the hot deformation of Cu-9%Sn alloys. Materials Science and Technology 15:803–811.

    Google Scholar 

  • Blaz, L., Sakai, T., and Jonas, J.J. (1983). Effect of initial grain size on the dynamic recrystallization of copper. Metal Science 17:609–616.

    Article  Google Scholar 

  • Bocher, Ph., Montheillet, F., and Jonas, J.J. (1997). Microstructural evolution during the dynamic recrystallization of a 304 stainless steel. In McNelley, R., ed., The third International Conference on Recrystallization and Related Phenomena. Monterey (CA). 355–362.

    Google Scholar 

  • Bunge, H.J. (1987). Three-dimensional texture analysis. International Materials Reviews 32:265–291.

    Google Scholar 

  • Busso, E.P. (1998). A continuum theory for dynamic recrystallization with microstructure-related length scales. International Journal of Plasticity 14:319–353.

    Article  MATH  Google Scholar 

  • Chovet-Sauvage, C. (2000). Evolution des microstructures et des textures en grande deformation à chaud d’un alliage Al-Mg-Si. Ph.D. Dissertation, Ecole Nationale Supérieure des Mines, Saint-Etienne, France.

    Google Scholar 

  • Couturier, G. (2003). Contribution à l’étude de la dynamique du Zener pinning: simulations numériques par elements finis. Ecole Nationale Supérieure des Mines, Saint-Etienne, France.

    Google Scholar 

  • De La Chapelle, S., Castelnau, O., Lipenkov, V., and Duval, P. (1998). Dynamic recrystallization and texture development in ice as revealed by the study of deep ice cores in Antarctica and Greenland. Journal of Geophysical Research 103:5091–5105.

    Article  Google Scholar 

  • Derby, B. (1992). Dynamic recrystallization: the steady state grain size. Scripta Metallurgica et Materialia 27:1581–1586.

    Article  Google Scholar 

  • Fridman, E.M., Kopezky, C.V., and Shvindlerman, L.S (1975). Effects of orientation and concentration factors on migration of individual grain boundaries in aluminium. Zeitschrift für Metallkunde 66:533–539.

    Google Scholar 

  • Frois, C, and Dimitrov, M.O. (1966). Influence de quelques eléments d’addition sur la recristallisation de l’aluminium très pur. Annales de Chimie 1:113–128.

    Google Scholar 

  • Gao, W., Sakai, T., and Miura, H. (1999). Modeling the new grain development under dynamic recrystallization. In Sakai, T., and Suzuki, H.G., eds., The Fourth International Conference on Recrystallization and Related Phenomena. Tsukuba: The Japan Institute of Metals. 659–664.

    Google Scholar 

  • Gavard, L. (2001). Recristallisation dynamique d’aciers inoxydables austénitiques de haute pureté. Ph.D. Dissertation, Ecole Nationale Supérieure des Mines, Saint-Etienne, France.

    Google Scholar 

  • Goetz, R.L., and Seetharaman, V. (1998). Modeling dynamic recrystallization using cellular automata. Script a Materialia 38:405–413.

    Article  Google Scholar 

  • Gourdet, S. (1997). Etude des mécanismes de recristallisation au cours de la déformation à chaud de láaluminium. Ph.D. Dissertation, Ecole Nationale Supérieure des Mines, Saint-Etienne, France.

    Google Scholar 

  • Gourdet, S., Girinon, A., and Montheillet, F. (1997). Discussion and modelling of continuous dynamic recrystallization. In Chandra, T. and Sakai, T., eds., Thermec’ 97, Wollongong (NSW), Australia. 2117–2124.

    Google Scholar 

  • Gourdet, S., and Montheillet, F. (2000). An experimental study of the recrystallization mechanism during hot deformation of aluminium. Materials Science and Engineering A 283:274–288.

    Article  Google Scholar 

  • Gourdet, S., and Montheillet, F. (2002). Effects of dynamic grain boundary migration during the hot compression of high stacking fault energy metals. Acta Materialia 50:2801–2812.

    Article  Google Scholar 

  • Gourdet, S., and Montheillet, F. (2003). A model of continuous dynamic recrystallization. Acta Materialia 51:2685–2699.

    Article  Google Scholar 

  • Guillopé, M., and Poirier, J.-P. (1979). Dynamic recrystallization during creep of single crystalline halite; an experimental study. Journal of Geophysical Research 84:5557–5567.

    Article  Google Scholar 

  • Humphreys, F.J., and Hatherly, M. (1995). Recrystallization and related annealing phenomena. Oxford: Pergamon.

    Google Scholar 

  • Hunderi, O., and Ryum, N. (1996). The influence of spatial grain size correlation on normal grain growth in one dimension. Acta Materialia 44:1673–1680.

    Article  Google Scholar 

  • Jonas, J.J. (1994). Dynamic recrystallization-Scientific curiosity or industrial tool? Materials Science and Engineering A 184:155–165.

    Article  Google Scholar 

  • Kaibyshev, R.O., and Sitdikov, O.Sh. (2000). On the role of twinning in dynamic recrystallization. The Physics of Metals and Metallography 89:384–390.

    Google Scholar 

  • Kalisher, S. (1881). Ãœber der Einfluss der Wärme auf die Molekularstruktur des Zinks. Berichtungen der deutschen chemischen Gesellschaft 14:2747–2753.

    Google Scholar 

  • Kalisher, S. (1882). Ãœber der Molekularstruktur der Metalle. Berichtungen der deutschen chemischen Gesellschaft 15:702–712.

    Google Scholar 

  • Kaptsan, Y.V., Gomostyrev, Yu.N., Urtsev, V.N., Levit, V.I., and Maslennikov, V.A. (1993). Mathematical model of dynamic recrystallization. Materials Science Forum 113–115:341–348.

    Google Scholar 

  • Laasraoui, A., and Jonas, J.J. (1991). Prediction of steel flow stresses at high temperatures and strain rates. Metallurgical Transactions A22:1545–15558.

    Google Scholar 

  • Lücke, K., and Stüwe H.P. (1963). On the theory of grain boundary migration. In Himmel, L., ed., Recovery and Recrystallization in Metals. Interscience Publications. 171–209.

    Google Scholar 

  • Luton, M.J., and Peczak, P. (1993). Monte Carlo modeling of dynamic recrystallization: recent developments. Materials Science Forum 113–115:67–80.

    Article  Google Scholar 

  • Lyttle, M.T., and Wert, J.A. (1994a). Modelling of continuous recrystallization in aluminium alloys. Journal of Materials Science 29:3342–3350.

    Article  Google Scholar 

  • Lyttle, M.T., and Wert, J.A. (1994b). Simulative modeling of continuous recrystallization of aluminum alloys. In Jonas, J.J., Bieler, T.R., and Bowman, K.J., eds., Advances in Hot Deformation Textures and Microstructures. Warrendale (PA): The Minerals, Metals and Materials Society. 373–383.

    Google Scholar 

  • Mackenzie, J.K. (1958). Second paper on statistics associated with the random disorientation of cubes. Biometrika 45:229–240.

    MATH  MathSciNet  Google Scholar 

  • Maurice, C, and Humphreys, F.J. (1998). 2-and 3-D curvature driven vertex simulations of grain growth. In Weiland, H., ed., Grain Growth in Polycrystalline Materials III, Warrendale (PA): The Minerals, Metals and Materials Society. 81–90.

    Google Scholar 

  • McQueen, H.J., Knustad, O., Ryum, N., and Solberg, J.K. (1985). Microstructural evolution in Al deformed to strains of 60 at 400 °C. Scripta Metallurgica 19:73–78.

    Article  Google Scholar 

  • Montheillet, F. (1999). Modeling the steady state regime of discontinuous dynamic recrystallization. In Sakai, T., and Suzuki, H.G., eds., The Fourth International Conference on Recrystallization and Related Phenomena. Tsukuba: The Japan Institute of Metals. 651–658.

    Google Scholar 

  • Montheillet, F., Cohen, M., and Jonas, J.J. (1984). Axial stresses and texture development during the torsion testing of Al, Cu and α-Fe. Acta Metallurgica 32:2077–2089.

    Article  Google Scholar 

  • Montheillet, F., Thomas, J.-Ph., and Damamme, G. (2002). Distribution de la taille des grains recristallisés dynamiquement dans les matériaux métalliques. In Congrès Matériaux 2002, Tours, France. CD-ROM publication.

    Google Scholar 

  • Oliveira, T. (2003). Effet du niobium et du titane sur la dèformation à chaud d’aciers inoxydables ferritiques stabilises. Ph.D. Dissertation, Ecole Nationale Supérieure des Mines, Saint-Etienne, France.

    Google Scholar 

  • Oliveira, T., and Montheillet, F. (2002). Evolution de la microstructure et de la texture d’aciers inoxydables ferritiques stabilises pendant la torsion à chaud. In Congrès Matériaux 2002, Tours, France. CD-ROM publication.

    Google Scholar 

  • Peczak, P. (1995). A Monte Carlo study of influence of deformation temperature on dynamic recrystallization. Acta Metallurgica et Materialia 43:1279–1291.

    Article  Google Scholar 

  • Ponge, D., and Gottstein, G. (1998). Necklace formation during dynamic recrystallization: mechanisms and impact on flow behavior. Acta Materialia 46:69–80.

    Article  Google Scholar 

  • Rollett, A.D., Luton, M.J., and Srolovitz, D.J. (1992). Microstructural simulation of dynamic recrystallization. Acta Metallurgica et Materialia 40:43–55.

    Article  Google Scholar 

  • Rossard, C, and Blain, P. (1959). Evolution de la structure de l’acier sous l’effet de la déformation plastique à chaud. Mémoires Scientiflques de la Revue de Métallurgie 56:285–300.

    Google Scholar 

  • Sakai, T., and Jonas, J.J. (1984). Dynamic recrystallization: mechanical and microstructural considerations. Acta Metallurgica 32:189–209.

    Article  Google Scholar 

  • Sandström, R., and Lagneborg, R. (1975). A model for hot working occurring by recrystallization. Acta Metallurgica 23:387–398.

    Article  Google Scholar 

  • Senkov, O.N., Jonas, J.J., and Froes, F.H. (1998). Steady-state flow controlled by the velocity of grain-boundary migration. Materials Science and Engineering A255:49–53.

    Google Scholar 

  • Stüwe, H.P. (1968). Do metals recrystallize during hot working? In Tegart, W.J.McG., and Sellars, C.M., eds., Deformation under Hot Working Conditions, ISI Special Report 108, Iron and Steel institute, London, 1–6.

    Google Scholar 

  • Stüwe, H.P., and Ortner, B. (1974). Recrystallization in hot working and creep. Metal Science 8:161–167.

    Google Scholar 

  • Tanaka, K., Otsuka, M., and Yamagata, H. (1999). Effect of orientation and purity on the dynamic recrystallization of aluminium single crystals with multi glide systems. Materials Transactions JIM 40:242–247.

    Google Scholar 

  • Thomas, J.-Ph. (2003). Ph.D. Dissertation, Ecole Nationale Supérieure des Mines, Saint-Etienne, France. To be published.

    Google Scholar 

  • Thomas, J.-Ph., Montheillet, F., and Dumont, Ch. (2003). Microstructural evolutions of superalloy 718 during dynamic and metadynamic recrystallizations. In Chandra, T., Torralba, J.M., and Sakai, T., eds., THERMEC’2003, Leganés, Madrid, Spain, Materials Science Forum 426–432:791–796.

    Google Scholar 

  • Thomsen, E.G., Yang, C.T., and Bierbower J.B. (1954). In: An Experimental Investigation of the Mechanics of Plastic Deformation of Metals. Berkeley: University of California Press.

    Google Scholar 

  • Thomson, W. (1887). On the division of space with minimum partitional area. Philosophical Magazine 24:503–514.

    Google Scholar 

  • Viswanathan, R., and Bauer, C.L. (1973). Kinetics of grain boundary migration in copper bicrystals with [001] rotation axes. Acta Metallurgica 21:1099–1109.

    Article  Google Scholar 

  • Volkov, A.Ye, Likhachev, V.A., and Shikhobalov, L.S. (1980). Theory of grain boundaries as autonomous imperfections of a crystal. Physics of Metals and Metallurgy 47:1–12.

    Google Scholar 

  • Winning, M., Gottstein, G., and Shvindlerman, L.S. (1999). Influence of external shear stresses on grain boundary migration. In Sakai, T., and Suzuki, H.G., eds., The fourth International Conference on Recrystallization and Related Phenomena. Tsukuba: The Japan Institute of Metals. 451–456.

    Google Scholar 

  • Yamagata, H. (1992). Multipeak stress oscillations of five-nine-purity aluminum during a hot compression test. Scripta Metallurgica et Materialia 27:201–203.

    Article  Google Scholar 

  • Yamagata, H. (1995). Dynamic recrystallization and dynamic recovery in pure aluminum at 583 K. Acta Metallurgica et Materialia 43:723–729.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 CISM, Udine

About this chapter

Cite this chapter

Montheillet, F. (2004). Moving Grain Boundaries During Hot Deformation of Metals: Dynamic Recrystallization. In: Fischer, F.D. (eds) Moving Interfaces in Crystalline Solids. CISM International Centre for Mechanical Sciences, vol 453. Springer, Vienna. https://doi.org/10.1007/3-211-27404-9_5

Download citation

  • DOI: https://doi.org/10.1007/3-211-27404-9_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-23899-8

  • Online ISBN: 978-3-211-27404-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics